Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой а. 1.f(x)=5x²-4x-2; a=-1 2.f(x)=5x-2x²+x³; a=0 3.f(x)=2x³-3x²+4x-1; a=-2
График - парабола, ветви вниз, для построения требуются доп точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу: Х= 0 -2 У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!
Объяснение:
1)58 : 7 ≈ 8,3 точка C
2)132 : 17 ≈ 7,8 точка D
3)107 : 13 ≈ 8,2 точка А
4)130 : 11 ≈11,8 между 11 и 12
5)140 : 17 ≈8,2 между 8 и 9
6)172 : 15 ≈11,5 между 11 и 12
7)3⁷*(3⁻⁴)²=3⁷*3⁻⁸=3⁻¹ = 1/3
8)2¹²*(2³)⁻⁵=2¹²*2⁻¹⁵=2⁻³= 1/8
9)√432/12= √144*3/12=12√3/12=√3
432 раскладывается на 2 множителя, 144*3 - всё под корнем
10)√648/18=√324*2/18=18√2/18=√2
648 раскладывается на 2 множителя, 324*2 - всё под корнем
11)√726/11=√121*6/11=11√6/11=√6
726 раскладывается на 2 множителя, 121*6 - всё под корнем
В(х; у)
х(в)= -b / 2a
x(в) = 2/-2 = -1
у(в)= -1+2+3=4
В(-1; 4)
ось: х=-1
Найдем нули функции:
-х2-2х+3=0
х2+2х-3=0
Д=4+12=16
х(1)=(-2+4)/2=1
х(2)=(-2-4)/2=-3
График - парабола, ветви вниз,
для построения требуются доп точки.
Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку.
Далее заполняем таблицу:
Х= 0 -2
У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!