В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
aksnov31526
aksnov31526
22.05.2023 12:10 •  Алгебра

Напишите решение уравнения


Напишите решение уравнения

Показать ответ
Ответ:
freedomman87
freedomman87
16.08.2021 23:14

\dfrac{1}{6},6

Объяснение:

ОДЗ: x > 0

6^{\log_6^2{x}}+x^{\log_6{x}}=12\\6^{\log_6{x}\cdot\log_6{x}}+x^{\log_6{x}}=12\\(6^{\log_6{x}})^{\log_6{x}}+x^{\log_6{x}}=12\\x^{\log_6{x}}+x^{\log_6{x}}=12\\2x^{\log_6{x}}=12\\x^{\log_6{x}}=6\\\log_6{x^{\log_6{x}}}=\log_6{6}\\\log_6{x}\cdot\log_6{x}=1\\\log_6^2{x}=1\\\displaystyle \left [ {{\log_6{x}=1} \atop {\log_6{x}=-1}} \right. \left [ {{x=6}} \atop {x=\dfrac{1}{6}}} \right.

Оба корня положительны, следовательно, они удовлетворяют ОДЗ.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота