В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Смешарик111
Смешарик111
16.04.2022 06:19 •  Алгебра

Найдите max и min значения заданной функции на промежутке: у=-2tg x на отрезке [0; п/6]

Показать ответ
Ответ:
VladSolo
VladSolo
07.08.2020 14:25
y=-2tgx\\\\y'=-2\cdot \frac{1}{cos^2x}\ \textless \ 0\; \; pri\; \; x\in (-\infty ,+\infty ) \; \; \Rightarrow

Функция y= -2tgx - убывающая функция, не имеющая точек экстремума. Значит наибольшее значение функция принимает в левой точке указанного промежутка, а наименьшее значение она принимает в правой точке промежутка.

x\in [\, 0,\; \frac{\pi}{6}\, ]\ \; \to \\\\ y(0)=-2tg0=0=y_{naibol}\; ,\\\\ y(\frac{\pi}{6})=-2tg\frac{\pi}{6}=-\frac{2}{\sqrt3}=-\frac{2\sqrt3}{3}=y_{naimen}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота