В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Goodmegaparadise
Goodmegaparadise
09.02.2020 01:17 •  Алгебра

Найдите наибольшее значение функции f(x)=3(2x-4)4-(2x-4)5 при |x-2|≤1

Показать ответ
Ответ:
25182830
25182830
01.10.2020 05:27

|x-2|\leq1 \\x-2\leq1\ \ \ \ \ \ \ \ \ \ x-2\geq-1\\x\leq3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\geq1

x принадлежит [1;3] 

 

Производная:

f'(x)=(3*(2x-4)^4)'-((2x-4)^5)'=\\=3*4*(2x-4)^3*(2x-4)'-5*(2x-4)^4*(2x-4)'=\\=24*(2x-4)^3-10*(2x-4)^4

 

Критические точки: 

24(2x-4)^3-10(2x-4)^4=0\\(2x-3)^3*(24-10(2x-4))=0\\(2x-3)^3*(24-20x+40)=0\\(2x-3)^3=0\ \ \ \ \ \ \ \ \ \ 64-20x=0\\2x-3=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ 20x=64\\x=\frac{3}{2}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=\frac{64}{20}=3.2

x=3.2 не входи в промежуток.

 

Находим значения функции в точках 1;3/2;3

f(1)=3*(2*1-4)^4-(2*1-4)^5 =3*(-2)^4-(-2)^5=\\=3*16-(-32)=80\\f(1.5)=3(2*1.5-4)^4-(2*1.5-4)^5=3*(-1)^4-(-1)^5=\\=3+1=4\\f(3)=3(2*3-4)^4-(2*3-4)^5=3*(2)^4-(2)^5=\\=3*32-64=32\\\\f_{max}=80\\f_{min}=4

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота