В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
TeamFortres2
TeamFortres2
03.06.2021 16:02 •  Алгебра

Найдите наименьшее значение функции а) y=3sinx - 10x + 3 и наибольшее значение ф-ции б) y=10cosx + 12x - 5 на промежутке [-3п (пи)/2; 0]

Показать ответ
Ответ:
Препод007
Препод007
01.07.2020 01:46

Объяснение:

a) ~ y = 3\sin x - 10x + 3~~x\in[-\frac{3\pi}{2};0]

Найдём стационарные точки. Для этого вычислим производную функции y и приравняем её к 0.

y' = (3\sin x -10x+3)' = 3\cos x -10; \qquad y' = 0\\ \\3 \cos x - 10 = 0\\ \\ 3 \cos x = 10

\cos x = \frac{10}{3} ∉ [-1; 1] ⇒ стационарных точек нет

Подставим границы промежутка

y(-\frac{3\pi}{2}) = 3 \sin (-\frac{3\pi}{2}) - 10\cdot (-\frac{3\pi}{2}) + 3=-3 \sin \frac{3\pi}{2} + 15\pi + 3 = 15\pi+6\\ \\ y(0) = 3\sin 0 - 10 \cdot 0 + 3 = 3

Наименьшее значение функции на промежутке [-3π/2; 0] равно 3

b) ~~y = 10\cos x+12x- 5\quad x\in[-\frac{3\pi}{2},0]\\ \\ y' = (10\cos x + 12x- 5)' = -10 \sin x + 12; \qquad y' = 0\\ \\ -10\sin x+12 = 0

\sin x = \frac{12}{10} ∉ [-1; 1] ⇒ стационарных точек нет

y(-\frac{3\pi}{2}) = 10\cdot \cos (-\frac{3\pi}{2})+12(-\frac{3\pi}{2}) -5 = -18\pi - 5\\ \\ y(0) =10\cos 0+12\cdot 0 - 5 = 10-5 = 5

Наибольшее значение функции на промежутке [-3π/2; 0] равно 5

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота