В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Prls
Prls
17.04.2022 15:53 •  Алгебра

Найдите площадь фигуры, ограниченной графиком функции y= 1 + x^2 и прямой y - 2=0

Показать ответ
Ответ:
мадина488
мадина488
07.10.2020 22:02
1. точка пересечения параболы 1+x^2 и прямой y-2=0 x1=1, x2=-1 (будущие пределы интегрирования)
2. площадь искомой фигуры s равна разности площадей s1и s2:
s1-площадь, ограниченная сверху прямой y-2=0 от x1=-1 до x2=1; интеграл f(x)=2 от -1 до 1: 2x(в т.1)-2x(в т.-1)=2+2=4 (теорема Ньютона-Лейбница);
s2-площадь фигуры, ограниченной сверху параболой 1+x^2 от x1=-1 до x2=1; интеграл f(x)=1-x^2 от x1=-1 до x2=1: (x-(x^3)/3 в т. x1=1)-(x-(x^3)/3 в т. x1=-1) = 4/3+4/3=8/3
3. искомая площадь (разность площадей s1 и s2) равна s=s1-s2=4-8/3=4/3 (примерно 1,33)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота