1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.
Сумма внутренних углов выпуклого многоугольника равна 180(n-2), где n- число сторон в многоугольнике.Возьмем любой многоугольник и поставим внутри его точку О. Затем эту точку О соединим со всеми вершинами многоугольника. Получится n треугольников, где n - число сторон многоугольника. Сумма углов в треугольнике равна 180 градусов. А сумма углов в n треугольниках будет равна 180n. А сумма углоа вокруг точки О равна 360 градусов. И если мы из 180n вычтем сумму углов вокруг точки О, то получится 180n - 360 = 180(n-2).
2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2.
4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое.
Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти.
Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.