Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:
x ∈(-∞; -2] ∪ [2;+∞)
3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2; х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:
Задача 1. На рисунку зображені крива байдужості та бюджетна лінія Припустимо, що ціна товару Х дорівнює 8 грн.
Визначте:
а) ціну товару У;
б) рівняння даної бюджетної лінії;
в) граничну норму заміщення товару У на товар Х у стані рівноваги споживача.
Рішення:
Рівняння бюджетної лінії має вид:
I = PXQX + PYQY,
якщо ми витрачаємо усі гроші на покупку тільки товару X або Y, то рівняння приймає такий вид:
I = PXQX або I = PYQY,
Таким чином, виникає можливість визначити величину доходу споживача, а також ціну товару У:
І = PXQX = 835 = 280 (грн.)
PY = І / QY = 280 / 30 = 9,3 (грн.)
Далі слід записати рівняння даної бюджетної лінії, використовуючи вже визначені ціни товарів Х та У:
І = 8QX + 9,3QY
Крім того, визначаємо граничну норму заміщення товару У на товар Х в стані рівноваги споживача:
MRSXY = PX / PY
MRSXY = 8 / 9,3 = 0,86.
x ∈{-2} ∪ [2;7]
Объяснение:
1) Найдём нули функции у₁ = х²-5х-14:
х²-5х-14 = 0
х₁,₂ = 5/2 ± √(25/4 +14) = 5/2 ± √(81/4) = 5/2 ± 9/2
х₁ = 5/2 + 9/2 = 14/2 = 7
х₂ = 5/2 - 9/2 = - 4/2 = -2
Графиком функции у₁ = х²-5х-14 является парабола, ветви которой направлены вверх; следовательно, у₁ = х²-5х-14 ≤0 на участке
x ∈ [-2; 7].
2) Неравенство х² ≥ 4 эквивалентно неравенству: х²- 4 ≥ 0.
Найдём нули функции у₂ =х²- 4:
х²- 4 = 0
х² = 4
х = ± √4
х₃ = - 2
х₄ = 2
Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:
x ∈(-∞; -2] ∪ [2;+∞)
3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2; х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:
x ∈{-2} ∪ [2;7]
ответ: x ∈{-2} ∪ [2;7]