Пусть х пельменей в час - производительность Валентины, тогда (х + 2) пельменя в час - производительность Софьи. На лепку 112 пельменей Валентина затрачивает на 8 часов меньше, чем Софья на лепку 360 таких же пельменей. Уравнение:
Y=x^3-3x Производная функции равна: y'=3x^2-3 Приравниваем производную к нулю: y'=0 3x^2-3=0 3(x^2-1)=0 x^2-1=0 x1=1 x2=-1 Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность) Берём любую точку из каждого интервала и подставляем в производную (3x^2-3). Из интервала (минус бесконечность; -1] возьмём -2. 3*(-2)^2-3=3*4-3=12-3=9 9>0, значит, на этом интервале функция возрастает.
Из интервала [-1;1] возьмём 0. 3*0^2-3=-3 -3<0, значит, на этот отрезке функция убывает.
Из интервала [1; плюс бесконечность) возьмём 2. 3*2^2-3=12-3=9 9>0, значит, функция возрастает.
ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
Пусть х пельменей в час - производительность Валентины, тогда (х + 2) пельменя в час - производительность Софьи. На лепку 112 пельменей Валентина затрачивает на 8 часов меньше, чем Софья на лепку 360 таких же пельменей. Уравнение:
360/(х+2) - 112/х = 8
360 · х - 112 · (х + 2) = 8 · х · (х + 2)
360х - 112х - 224 = 8х² + 16х
8х² + 16х - 360х + 112х + 224 = 0
8х² - 232х + 224 = 0
Разделим обе части уравнения на 8
х² - 29х + 28 = 0
D = b² - 4ac = (-29)² - 4 · 1 · 28 = 841 - 112 = 729
√D = √729 = 27
х = (-b±√D)/(2a)
х₁ = (29-27)/(2·1) = 2/2 = 1 (не подходит по условию задачи)
х₂ = (29+27)/(2·1) = 56/2 = 28
ответ: 28 пельменей в час лепит Валентина.
Проверка:
112 : 28 = 4 ч - время работы Валентины
360 : (28+2) = 360 : 30 = 12 ч - время работы Софьи
12 ч - 4 ч = 8 ч - разница
Производная функции равна:
y'=3x^2-3
Приравниваем производную к нулю:
y'=0
3x^2-3=0
3(x^2-1)=0
x^2-1=0
x1=1
x2=-1
Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность)
Берём любую точку из каждого интервала и подставляем в производную (3x^2-3).
Из интервала (минус бесконечность; -1] возьмём -2.
3*(-2)^2-3=3*4-3=12-3=9
9>0, значит, на этом интервале функция возрастает.
Из интервала [-1;1] возьмём 0.
3*0^2-3=-3
-3<0, значит, на этот отрезке функция убывает.
Из интервала [1; плюс бесконечность) возьмём 2.
3*2^2-3=12-3=9
9>0, значит, функция возрастает.
ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.