В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
JokeHa
JokeHa
16.05.2020 03:33 •  Алгебра

Найти площадь фигуры ограниченной линиями
y=x^2 и x+y=6

Показать ответ
Ответ:
Danik07727
Danik07727
17.08.2020 11:57

y = 6 - x — прямая, проходящая через точки (0;6), (6;0).

y = x² — парабола, ветви которой направлены вверх.

Графики функций пересекаются в точках абсцисс x = -3 и x=2.

Площадь фигуры ограниченной линиями:

S=\displaystyle \int\limits^2_{-3} {\Big(f(x)-g(x)\Big)} \, dx =\int\limits^2_{-3}\Big(6-x-x^2\Big)dx=\left(6x-\dfrac{x^2}{2}-\dfrac{x^3}{3}\right)\bigg|^2_{-3}=\\ \\ \\ =6\cdot 2-\dfrac{2^2}{2}-\dfrac{3^3}{3}-\left(6\cdot (-3)-\dfrac{(-3)^2}{2}-\dfrac{(-3)^3}{3}\right)=\dfrac{125}{6}


Найти площадь фигуры ограниченной линиями y=x^2 и x+y=6
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота