Решение Функция y = f(x) называется четной, если для любого x из области определения функции выполняется равенство f(-x) = f(x). четные функции: y = /x/, y = x², y = cos x График четной функции симметричен относительно оси OY. Функция y = f(x) называется нечетной, если для любого x из области определения функции выполняется равенство f(-x) = - f(x). нечетные функции: y = 1/x, y = x³, y = sin x, y = tg x, y = ctg x, y = arcsin x, y = arctg x График нечетной функции симметричен относительно начала координат O.
Функция y = f(x) называется четной, если для любого x из области определения функции выполняется равенство
f(-x) = f(x).
четные функции: y = /x/, y = x², y = cos x
График четной функции симметричен относительно оси OY.
Функция y = f(x) называется нечетной, если для любого x из области определения функции выполняется равенство
f(-x) = - f(x).
нечетные функции: y = 1/x, y = x³, y = sin x, y = tg x, y = ctg x, y = arcsin x, y = arctg x
График нечетной функции симметричен относительно начала координат O.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.