Определим моменты времени, когда камень находился на высоте ровно 9 метров. Для этого решим уравнение h(t)=9:
Проанализируем полученный результат: поскольку по условию задачи камень брошен снизу вверх, это означает, что в момент времени t=0,6(с) камень находился на высоте 9 метров, двигаясь снизу вверх, а в момент времени t=3(с) камень находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее девяти метров 2,4 секунды.
ответ: 2,4.
5)Задание
Пусть х- скорость лодки в стоячей воде;
тогда х-2 и х+2 скорость лодки соответственно против течения и по течению
1)Задание
Интервал (часы) 0-1 1-2 2-3 3-4
Частота 3 9 12 6
30-100% х=(6*100)/30
6-х% х=20%- выполняют домашнее более трех частот
2)Задание
а)2016
б)20%
3)Задание
СОРИ НЕ ЗНАЮ
4)Задание
Определим моменты времени, когда камень находился на высоте ровно 9 метров. Для этого решим уравнение h(t)=9:
Проанализируем полученный результат: поскольку по условию задачи камень брошен снизу вверх, это означает, что в момент времени t=0,6(с) камень находился на высоте 9 метров, двигаясь снизу вверх, а в момент времени t=3(с) камень находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее девяти метров 2,4 секунды.
ответ: 2,4.
5)Задание
Пусть х- скорость лодки в стоячей воде;
тогда х-2 и х+2 скорость лодки соответственно против течения и по течению
8/(x-2) время против течения
12/(x+2)-время по течению
в сумме по условию это составило 2 часа
8/(x-2)+12/(x+2)=2
4/(x-2)+6/(x+2)=1
(4x+8+6x-12)=x^2-4
10x-4=x^2-4
x=10
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное)
Применим метод Эйлера
Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение
Корни которого
Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное)
отсюда
где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
уч.н.
Запишем общее решение исходного уравнения
- ответ