Можно заметить что очки начисляются как 2 в степени (минута игры -1)
Соответственно, логарифмируя конечную цифру 100000 по основанию 2 получаем результат - 16,61. То есть, результат 100000 будет достигнут через (16,61+1)=17,61 минут с начала игры. Но, так как очки начисляются только по истечении целой минуты, то после 17 минут игры 100000 еще не будет,а после 18 минут - будет результат превышающий 100000.
Решите графическим методом систему уравнений и найдите координаты точки пересечения графиков функций:
{y=2x-1
{x+y=-4
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразовать уравнения в более удобный для вычислений вид:
Через 18 минут
Объяснение:
после 1 минуты 1 очко - 2⁰=1
после 2 минуты 1*2=2 очка = 2¹
после 3 - 4 очка =2²
после 4 - 8 очков =2³
после 5 - 16 очков = 2⁴
после n минут 2ⁿ⁻¹ очков
Можно заметить что очки начисляются как 2 в степени (минута игры -1)
Соответственно, логарифмируя конечную цифру 100000 по основанию 2 получаем результат - 16,61. То есть, результат 100000 будет достигнут через (16,61+1)=17,61 минут с начала игры. Но, так как очки начисляются только по истечении целой минуты, то после 17 минут игры 100000 еще не будет,а после 18 минут - будет результат превышающий 100000.
Проверяем:
2¹⁷⁻¹ = 65536 очков после 17 минут игры
2¹⁸⁻¹ = 131072 очка после 18 минут игры.
В решении.
Объяснение:
Решите графическим методом систему уравнений и найдите координаты точки пересечения графиков функций:
{y=2x-1
{x+y=-4
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразовать уравнения в более удобный для вычислений вид:
y=2x-1 x+y= -4
у= -4-х
Таблицы:
х -1 0 1 х -1 0 1
у -3 -1 1 у -3 -4 -5
Координаты точки пересечения прямых (-1; -3).
Решение системы уравнений (-1; -3).