1*3+3*5+5*7+7*9+...+999*1001=(2-1)*(2+1)+*(4-1)(4+1)+(6-1)*(6+1)+...+(1000-1)*(1000+1)=
=2^2+4^2+6^2+...+1000^2-500*1^2=4*(1^2+2^2+3^2+...+500^2)-500=
=4*500*501*1001/6-500=176 166 500
использовали формулу первых n квадратов натуральных чисел
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
формулу разности квадратов
a^2-b^2=(a-b)(a+b)
1*3+3*5+5*7+7*9+...+999*1001=(2-1)*(2+1)+*(4-1)(4+1)+(6-1)*(6+1)+...+(1000-1)*(1000+1)=
=2^2+4^2+6^2+...+1000^2-500*1^2=4*(1^2+2^2+3^2+...+500^2)-500=
=4*500*501*1001/6-500=176 166 500
использовали формулу первых n квадратов натуральных чисел
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
формулу разности квадратов
a^2-b^2=(a-b)(a+b)