А) Если a > 0, то x = +-a; если a = 0, x = 0; если a < 0, решений нет.
б) Если a > 0, то x < -a или x > a; если a = 0, то x ∈ R \ {0}; если a < 0, x ∈ R
в) Если a > 0, то -a < x < a; иначе решений нет.
г) Если a = 0, то x = 0; иначе x = +-a
д) |x - 1| + |x - 3| <= a Если a < 0, корней нет (сумма двух модулей неотрицательна) Если 0 <= a < 2, корней нет (геом. смысл модуля - расстояние до точки. |x - 1| + |x - 3| - это сумма расстояний до точек 1 и 3. Очевидно, эта сумма принимает своё наименьшее значение, равное двум, если x лежит между точками 1 и 3) Если a = 2: 1 <= x <= 3 (см. предыдущее объяснение)
Пусть a > 2. Тогда (опять вспоминаем размышления о геом. смысле модуля) решение - все точки внутри отрезка [1, 3] + все точки, которые лежат вне отрезка, расстояние от которых до ближайшей из точек x = 1, x = 3 не превосходит (a - 2)/2. ответ на этот случай [1 - (a - 2)/2, 3 + (a - 2)/2] ответ. Если a < 2, решений нет. Если a >= 2, x ∈ [2 - a/2, 2 + a/2]
б) Если a > 0, то x < -a или x > a; если a = 0, то x ∈ R \ {0}; если a < 0, x ∈ R
в) Если a > 0, то -a < x < a; иначе решений нет.
г) Если a = 0, то x = 0; иначе x = +-a
д) |x - 1| + |x - 3| <= a
Если a < 0, корней нет (сумма двух модулей неотрицательна)
Если 0 <= a < 2, корней нет (геом. смысл модуля - расстояние до точки. |x - 1| + |x - 3| - это сумма расстояний до точек 1 и 3. Очевидно, эта сумма принимает своё наименьшее значение, равное двум, если x лежит между точками 1 и 3)
Если a = 2: 1 <= x <= 3 (см. предыдущее объяснение)
Пусть a > 2. Тогда (опять вспоминаем размышления о геом. смысле модуля) решение - все точки внутри отрезка [1, 3] + все точки, которые лежат вне отрезка, расстояние от которых до ближайшей из точек x = 1, x = 3 не превосходит (a - 2)/2. ответ на этот случай [1 - (a - 2)/2, 3 + (a - 2)/2]
ответ. Если a < 2, решений нет. Если a >= 2, x ∈ [2 - a/2, 2 + a/2]
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .