О З точки А, що лежить поза колом проведено до нього дві дотичні AC i AB, де CiB - точки дотику, 2CAB=60°. Знайдіть радіус кола, якщо відстань від точки А до центра кола дорівнює 16 см. В
Итак, прямоугольник. Площадь его равна произведению ширины на длину. Пусть длина будет Х см. Тогда ширина Х-6см, т.к. по условию задачи, ширина на 6 см меньше длины. Значит площадь прямоугольника равна Х * (Х-6) см в квадрате. По учловию площадь равна 40.
Значит, Х* (Х-6) = 40.
Решаем уравнение:
1) Раскрываем скобки ( я буду писать х в квадрате как х2):
х2 - 6х =40.
Переносим 40: х2 - 6х -40 =0.
Получилось простое квадратное уравнение.
По формуле дискриминанта (Д): Д = (б2 - 4ас). В роли б у нас выступает 6 (т.е. 2 член уравнения, который умножается на х), в роли а - первый член, который умножается на х2, в нашем случае это 1, в роли с - третий член, который обычно в виде простого числа, т.е. -40.
Итак, д=(-6)*(-6) - 4* 1 *(- 40) = 36 + 160 = 196
Далее, по формулам, находим корни уравнения:
х = (- б + корень из д)/2а = 6 + 14 / 2 = 20/2 = 10
или х = ( - б - корень из д) / 2а = (6 - 14) / 2 = - 8/2 = -4.
У нас два корня. Но так как мы за букву х брали длину прямоугольника, то она не можнт быть отрицательной. Значит, подходит только первый вариант.
Итак, длина прямоугольника = 10, следовательно ширина равна 10 - 6 = 4.
6
AD=25
AB=15
BAC=DAC
DB и АВ перпендиккулярны
Накрест лежащие углы CAD и АСВ равны. Тогда АВС равнобедренный и ВС=15
Треугольники ABH и ABD подобны. Отношение:
АВ:АН=АD:АВ
15:АН=25:15
АН=9
Остается найти ВН по теореме Пифагора:
ВН=корень(15^2-9^2)=12
S=(15+25)/2*12=240
ответ: 240
7
Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC
4-4*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
4-4*CM*cos120=100-20*CM*cos60
4-4*CM*(-1/2)=100-20*CM*1/2
4+2*CM=100-10*CM
12*CM=96
СМ=8
ответ: 8
Итак, прямоугольник. Площадь его равна произведению ширины на длину. Пусть длина будет Х см. Тогда ширина Х-6см, т.к. по условию задачи, ширина на 6 см меньше длины. Значит площадь прямоугольника равна Х * (Х-6) см в квадрате. По учловию площадь равна 40.
Значит, Х* (Х-6) = 40.
Решаем уравнение:
1) Раскрываем скобки ( я буду писать х в квадрате как х2):
х2 - 6х =40.
Переносим 40: х2 - 6х -40 =0.
Получилось простое квадратное уравнение.
По формуле дискриминанта (Д): Д = (б2 - 4ас). В роли б у нас выступает 6 (т.е. 2 член уравнения, который умножается на х), в роли а - первый член, который умножается на х2, в нашем случае это 1, в роли с - третий член, который обычно в виде простого числа, т.е. -40.
Итак, д=(-6)*(-6) - 4* 1 *(- 40) = 36 + 160 = 196
Далее, по формулам, находим корни уравнения:
х = (- б + корень из д)/2а = 6 + 14 / 2 = 20/2 = 10
или х = ( - б - корень из д) / 2а = (6 - 14) / 2 = - 8/2 = -4.
У нас два корня. Но так как мы за букву х брали длину прямоугольника, то она не можнт быть отрицательной. Значит, подходит только первый вариант.
Итак, длина прямоугольника = 10, следовательно ширина равна 10 - 6 = 4.