Объяснение:
1)(2a - 5b)·(... - ...) = 6a^3 - 15a^2*b - 14ab + ...;
6a^3 : 2a = 3a^2
14ab : 2a = 7b
(2a - 5b)(3a^2 - 7b) = 6a^3 - 15a^2*b - 14ab + 35b^2
2)(... - ...)·(6x^2 - 5y^2) = 12x^3 + 42x^2*y - ... - 35y^3;
12x^3 : 6x^2 = 2x
-35y^3 : (-5y^2) = 7y
(2x + 7y)(6x^2 - 5y^2) = 12x^3 + 42x^2*y - 10xy^2 - 35y^3
3)(3a + 4c)·(... + ...) = 20ac + 8bc + 6ab + ...;
20ac : 4c = 5a
6ab : 3a = 2b
(3a + 4c)(5a + 2b) = 20ac + 8bc + 6ab + 15a^2
4)(... + ...)·(2a + 5b) = ... + 5ab + 8ac + 20b
Здесь опечатка, в конце должно быть 20bc
5ab : 5b = a
8ac : 2a = 4c
(a + 4c)(2a + 5b) = 2a^2 + 5ab + 8ac + 20bc
Вероятность события равна частному от деления числа благоприятных исходов на общее количество исходов.
1. Цифра 1 встречается 1 раз - это благоприятные исходы.
Всего 9 цифр - это общее количество исходов.
Вероятность того, что цифра 1 будет на первом месте 1/9.
2. Цифра 2 будет выбираться из 9 - 1 = 8 карточек.
Тогда вероятность ее выбора 1/8.
3. Цифра 3 выбирается из 9 - 2 = 7 карточек. Вероятность выбора 1/7.
4. Цифра 4 выбирается из 9 - 3 = 6 карточек. Вероятность 1/6.
5. Совместная вероятность равна произведению индивидуальных.
P = 1/9 * 1/8 * 1/7 * 1/6 = 1/3024.
ответ: Вероятность получить число 1234 равна 1/3024.
Объяснение:
1)(2a - 5b)·(... - ...) = 6a^3 - 15a^2*b - 14ab + ...;
6a^3 : 2a = 3a^2
14ab : 2a = 7b
(2a - 5b)(3a^2 - 7b) = 6a^3 - 15a^2*b - 14ab + 35b^2
2)(... - ...)·(6x^2 - 5y^2) = 12x^3 + 42x^2*y - ... - 35y^3;
12x^3 : 6x^2 = 2x
-35y^3 : (-5y^2) = 7y
(2x + 7y)(6x^2 - 5y^2) = 12x^3 + 42x^2*y - 10xy^2 - 35y^3
3)(3a + 4c)·(... + ...) = 20ac + 8bc + 6ab + ...;
20ac : 4c = 5a
6ab : 3a = 2b
(3a + 4c)(5a + 2b) = 20ac + 8bc + 6ab + 15a^2
4)(... + ...)·(2a + 5b) = ... + 5ab + 8ac + 20b
Здесь опечатка, в конце должно быть 20bc
5ab : 5b = a
8ac : 2a = 4c
(a + 4c)(2a + 5b) = 2a^2 + 5ab + 8ac + 20bc
Вероятность события равна частному от деления числа благоприятных исходов на общее количество исходов.
1. Цифра 1 встречается 1 раз - это благоприятные исходы.
Всего 9 цифр - это общее количество исходов.
Вероятность того, что цифра 1 будет на первом месте 1/9.
2. Цифра 2 будет выбираться из 9 - 1 = 8 карточек.
Тогда вероятность ее выбора 1/8.
3. Цифра 3 выбирается из 9 - 2 = 7 карточек. Вероятность выбора 1/7.
4. Цифра 4 выбирается из 9 - 3 = 6 карточек. Вероятность 1/6.
5. Совместная вероятность равна произведению индивидуальных.
P = 1/9 * 1/8 * 1/7 * 1/6 = 1/3024.
ответ: Вероятность получить число 1234 равна 1/3024.