Сумма внутренних углов выпуклого многоугольника равна 180(n-2), где n- число сторон в многоугольнике.Возьмем любой многоугольник и поставим внутри его точку О. Затем эту точку О соединим со всеми вершинами многоугольника. Получится n треугольников, где n - число сторон многоугольника. Сумма углов в треугольнике равна 180 градусов. А сумма углов в n треугольниках будет равна 180n. А сумма углоа вокруг точки О равна 360 градусов. И если мы из 180n вычтем сумму углов вокруг точки О, то получится 180n - 360 = 180(n-2).
5.4) 15 (минут) - за столько времени наполнят бассейн обе трубы, открытые одновременно.
5.2) 15/20, или 3/4.
Объяснение:
5.4 - Первая труба наполнит бассейн за 24 мин, а вторая за 40 мин. За сколько минут наполнится бассейн, если открыть обе эти трубы?
1 - объём бассейна.
1:24=1/24 - часть бассейна заполнит первая труба за 1 минуту.
1:40=1/40 - часть бассейна заполнит вторая труба за 1 минуту.
1/24+1/40=8/120=1/15 - часть бассейна заполнят обе трубы за 1 минуту, открытые одновременно.
1 : 1/15=15 (минут) - за столько времени наполнят бассейн обе трубы, открытые одновременно.
5.2 - Укажите хотя бы одну обыкновенную дробь, большую 0,7, но меньшую 0,8 .
Чтобы определить обыкновенную дробь, которая будет меньше, чем 0,8, и больше, чем 0,7, переведём десятичные дроби 0,7 и 0,8 в обыкновенные дроби.
0,7 = 7/10;
0,8 = 8/10.
Теперь, пользуясь основным свойством дроби, умножим числитель и знаменатель получившихся обыкновенных дробей на число 2.
7/10 = 14/20;
8/10 = 16/20.
Поскольку знаменатели у дробей одинаковые, то для сравнения дробей используем их числители.
14 < 15 < 16.
Дробь с числителем 15 и знаменателем 20 будет удовлетворять условиям задания.
ответ: 15/20, или 3/4.
Второй вариант:
Если добавить ноль к 0,7 и к 0,8 то они не изменятся, и мы получим
0,70 и 0,80, но между ними можно поставить число, например, 0,75.
Но так как в задаче сказано ОБЫКНОВЕННУЮ дробь, переводим
десятичную дробь в обыкновенную, получаем 3/4, (или 15/20).