решите систему уравнений методом подстановки общая скобка один пример сверху другой снизу 3x-y=-5. -5x+2y=1, т. е из одного уравнения выразить одну переменную и подставить во второе. Из двух уравнений проще выразить из первого у, т. к. коэффициент равен 1, получим
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
решите систему уравнений методом подстановки общая скобка один пример сверху другой снизу 3x-y=-5. -5x+2y=1, т. е из одного уравнения выразить одну переменную и подставить во второе. Из двух уравнений проще выразить из первого у, т. к. коэффициент равен 1, получим
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!
Объяснение:
260. Преобразуем тригонометрическое равенство, используя формулу сокращенного умножения для разности квадратов двух выражений:
x^2 - y^2 = (x + y)(x - y);
cos^4(a) - sin^4(a) = 1/8;
(cos^2(a) + sin^2(a))(cos^2(a) - sin^2(a)) = 1/8.
2. Сумма квадратов функций синус и косинус одного и того же аргумента равна единице:
cos^2(a) + sin^2(a) = 1, отсюда:
sin^2(a) = 1 - cos^2(a).
cos^2(a) - sin^2(a) = 1/8;
cos^2(a) - (1 - cos^2(a)) = 1/8;
2cos^2(a) - 1 = 1/8;
2cos^2(a) = 9/8;
cos^2(a) = 9/16;
cosa = ±3/4.
ответ: ±3/4.