Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически.
х² = 6 - х
х² + х - 6 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении.
Для построения прямой достаточно двух точек: х = 0, у = 6,
х = 3, у = -3+6 = 3
б) |5 - 4a| = 5 - 4a ===> 5 - 4a >= 0, 4a <= 5, a <= 5/4 =
= 1.25
в) |18 - 9a| / (18 - 9a) = 1 ===> 18 - 9a > 0, 9a < 18
a < 18/9 = 2
г) |10a - 45| / 10a - 45 = -1 ===> 10a - 45 < 0 10a > 45
a > 45 / 10 = 4.5
ответ. а) a > 31/3, б) a <= 1.25, в) a < 2, г) a > 4.5