Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
Окружность около параллелограмма можно описать только тогда, когда этот параллелограмм - прямоугольник.
Стороны его попарно равны.
1)
Площадь этого параллелограмма равна произведению сторон. S=3*4=12
Площадь равновеликого квадрата а²=12
а=√12=2√3.
Р/√3=2
2)
Углы ВКА и КАD равны, как накрестлежащие, а углы ВАК и КАD равны по условию. Поэтому треугольник АВК - равнобедренный прямоугольный и его гипотенуза АК=3√2
АК/√2=(3√2)/√2=3
3)
Четырехугольник АКСD - прямоугольная трапеция с высотой=CD=3 и основаниями КС и АD.
КС=ВС-ВК=4-3=1
S (АКСD)=CD*(KC+AD):2
S (АКСD)=3*(1+4):2=7,5
a² = 12 b² = 3
c² = a² - b² = 12 - 3 = 9 ⇒ c = 3
Фокусы имеют координаты :
F₁ (0; - c) , F₂ (0 ; c) , где c = 3
Значит F₁(0 ; - 3) , F₂(0 ; 3)
Расстояние между фокусами равно 2с, а значит равно : 2 * 3 = 6
6.2)
a² = 10 b² = 26
Аналогично
c² = 26 - 10 = 16 ⇒ c = 4
Координаты фокусов :
F₁(0 ; - 4) , F₂(0 , 4)
Расстояние между фокусами равно 2с, то есть 8.
7.1)
a² = 25 ⇒ a = 5 b² = 9 ⇒ b = 3
c² = a² - b² = 25 - 9 = 16 ⇒ c = 4
В данном случае a > b поэтому эксцентриситетом будет отношение :
e = c/a = 4/5
7.2)
a² = 7 ⇒ a = √7 b² = 16 ⇒ b = 4
В этом случае b > a , поэтому :
c² = b² - a² = 16 - 7 = 9 ⇒ c = 3
e = c/b = 3/4