Определение числовой функции и ее задания Вариант 1 1. Постройте график функции y= = (х -1. -х - 4, если - 1 2. Дана функция f(x) =-x+16, если о x - 14, если х> 9 а) Вычислить f(-0,5); f(0); f(4); f(9); f(11). б) Найти D(f) и E(f).
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Дано: найти площадь между линиями у=sin(x), y=sin(3x) в пределах от х =0 до х = π/2.
Находим точку пересечения линий - это условие sin(x) = sin(3x).
Синус тройного угла равен: sin(3x) = 3sin(x) - 4sin³(x). Подставим:
sin(x) = 3sin(x) - 4sin³(x).
4sin³(x) = 2sin(x).
4sin³(x) - 2sin(x) = 0. Сократим на 2.
2sin³(x) - sin(x) = 0. Вынесем за скобки.
sin(x)(2sin²(x) - 1) = 0. Приравниваем нулю каждый множитель.
sin(x) = 0. х = πк, к ∈ Z.
2sin²(x) - 1, sin(x) = +-1/√2.
x = 2πк +- (π/4), x = 2πк +- (3π/4).
Из этих корней выбираем тот, что находится между 0 и π/2.
Это х = 1/√2 или х = √2/2.
Заданная площадь этой точкой делится на 2 участка.
.
В числовом выражении S1 ≈ 0,27614.
Аналогично находим:
В числовом выражении S2 ≈ 0,94281.
ответ: площадь равна (1/3)*(4√2 - 2) ≈ 1,21895.