Определите дробь, знаменатель которой на 5 больше числителя и которая обращается в 1/2 если к её числителю и знаменателю прибавить по 2 ( еще 4 если можно)
b+bq+bq^2+bq^3+bq^4+bq^5 = b*(1+q+q^2+q^3+q^4+q^5) = 364,5*(1+(8/9)+(8/9)^2+(8/9)^3+(8/9)^4+(8/9)^5) = 1662+53/162 = 1662,32716 сумма первых шести ее членов
Подпоследовательность сходящейся последовательности сходится к тому же пределу, что и исходная последовательность это обозначает, что оставшаяся последовательность будет сходящейся в обоих случаях и ее предел равен 8
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z
b-0,5 bq-1 bq^2-4 bq^3-12 - члены арифметрической прогрессии
(bq^2-4)-(b-0,5) = 2*((bq-1) - (b-0,5))
(bq^3-12)-(b-0,5) = 3*((bq-1) - (b-0,5))
bq^2-b-3,5 = 2bq-2b+1
bq^3-b-11,5 = 3bq-3b+1,5
bq^2-2bq+b=4,5
bq^3-3bq+2b=13
b=4,5/(q^2-2q+1)
b=13/(q^3-3q+2)
b=4,5/(q^2-2q+1)
4,5(q^3-3q+2)=13(q^2-2q+1)
b=4,5/(q^2-2q+1)
9q^3-27q+18=26q^2-52q+26
b=4,5/(q^2-2q+1)
9q^3 - 26q^2 + 25q - 8 = 0
b=4,5/(q^2-2q+1)
9q^3 - 26q^2 + 25q - 8 = (9q^3 - 9q^2)-26q^2+9q^2 + 25q - 8 =
= (9q^3 - 9q^2)-(17q^2-17q) + 25q-17q - 8 =
= (9q^3 - 9q^2)-(17q^2-17q) + 8q - 8 = (q-1)(9q^2-17q+8)=(q-1)^2(9q-8)=0
q=1- ложный корень
q = 8/9 - знаменатель прогрессии
b=4,5/(q^2-2q+1)=4,5/((8/9)^2-2*(8/9)+1)= 364,5
b+bq+bq^2+bq^3+bq^4+bq^5 = b*(1+q+q^2+q^3+q^4+q^5) = 364,5*(1+(8/9)+(8/9)^2+(8/9)^3+(8/9)^4+(8/9)^5) = 1662+53/162 = 1662,32716 сумма первых шести ее членов
Подпоследовательность сходящейся последовательности сходится к тому же пределу, что и исходная последовательность
это обозначает, что оставшаяся последовательность будет сходящейся в обоих случаях и ее предел равен 8