1) a+b+c=0 => a+b=-c => (a+b)³=(-c)³ => a³+3a²b+3ab²+b³=-c³ => => a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) => => a³+b³+c³=3abc 2) Обратное утверждение: Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов). Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0. Таким образом, пункт 1 является верным. Пункт 2 не является верным. Найдем другие два варианта для c. Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки: c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²). Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c: D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0 c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица. Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a. Если D<0, то c1=(a+b)/2+i√3(a-b)/2, c2=(a+b)/2-i√3(a-b)/2. А возможные варианты для суммы станут такими: a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2, или a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
№1 Пропорция верна , если произведение крайних членов , равно произведению средних. Проверим Из каких отношений нельзя составить пропорцию? a) 2:7 и 11:33; 2·33=7·11 не верно б) 1/3 : 1/4 и 2 * 1/2; 1/3·1/2=2·1/2 не верно в) 0,1 : 7 и 0,5 : 35; 0,1·35=7·0,5 - верно г) 0,02 : 0,1 и 2 : 10; 0,02·10=0,1·2 - верно Нельзя составить под а) и б)
№2 Дана пропорция: 5:а = 6 : b. Значит 5b=6a. Проверим.Какое из следующих равенств пропорцией не является? a) a : b = 5 : 6; 5b=6a б) b : а = 6 : 5 ;5b=6a в) a : b = 5 : 6; 5b=6a г) a : 5 = b : 6;5b=6a Значит все равенства пропорции
=> a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) =>
=> a³+b³+c³=3abc
2) Обратное утверждение:
Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов).
Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0.
Таким образом, пункт 1 является верным. Пункт 2 не является верным.
Найдем другие два варианта для c.
Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки:
c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²).
Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c:
D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0
c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица.
Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a.
Если D<0, то c1=(a+b)/2+i√3(a-b)/2,
c2=(a+b)/2-i√3(a-b)/2.
А возможные варианты для суммы станут такими:
a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2,
или
a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
Пропорция верна , если произведение крайних членов , равно произведению средних. Проверим
Из каких отношений нельзя составить пропорцию?
a) 2:7 и 11:33; 2·33=7·11 не верно
б) 1/3 : 1/4 и 2 * 1/2; 1/3·1/2=2·1/2 не верно
в) 0,1 : 7 и 0,5 : 35; 0,1·35=7·0,5 - верно
г) 0,02 : 0,1 и 2 : 10; 0,02·10=0,1·2 - верно
Нельзя составить под а) и б)
№2
Дана пропорция: 5:а = 6 : b. Значит 5b=6a. Проверим.Какое из следующих равенств пропорцией не является?
a) a : b = 5 : 6; 5b=6a
б) b : а = 6 : 5 ;5b=6a
в) a : b = 5 : 6; 5b=6a
г) a : 5 = b : 6;5b=6a
Значит все равенства пропорции