a > b и b < a
Объяснение:
Решение на фото, на всякий случай продублирую, если будет не видно.
Неверные неравенства:
Представим, что точка А это -2 (можно брать и -1, результат будет таким же). Точка b - это +1
Исходя из этого решаем:
1)b> a
1 > -2 - верно, т.к положительное число больше отрицательного;
2) a + 10 < b + 10
-2 + 10 < 1 + 10
8 < 11 - верно;
3) a < 0
-2 < 0 - верно, т.к отрицательное число меньше нуля;
4) a > b
-2 > 1 - неверно, т.к положительное число больше отрицательного
-2 < 1 - верно
5) b < a
1 < -2 - неверно, т.к положительное число больше отрицательного
1 > -2 - верно
ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 - 4x3 + 2x2 x2 + 2x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8
a > b и b < a
Объяснение:
Решение на фото, на всякий случай продублирую, если будет не видно.
Неверные неравенства:
a > b и b < a
Представим, что точка А это -2 (можно брать и -1, результат будет таким же). Точка b - это +1
Исходя из этого решаем:
1)b> a
1 > -2 - верно, т.к положительное число больше отрицательного;
2) a + 10 < b + 10
-2 + 10 < 1 + 10
8 < 11 - верно;
3) a < 0
-2 < 0 - верно, т.к отрицательное число меньше нуля;
4) a > b
-2 > 1 - неверно, т.к положительное число больше отрицательного
-2 < 1 - верно
5) b < a
1 < -2 - неверно, т.к положительное число больше отрицательного
1 > -2 - верно
ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8