Владимир Дубровский стал разбойником в силу тяжелых обстоятельств, сложившихся в имении его отца – Кистенёвке. Неподалеку от Кистенёвки проживал богатый помещик Кирилл Петрович Троекуров, который очень любил охоту. Дубровский и Троекуров были приятелями, несмотря на то что Троекуров был намного богаче Дубровского.
Андрей Дубровский имел единственную деревню, а для охоты у него было две гончих собаки. Троекуров держал великолепную псарню. «Псарня чудная, вряд людям вашим житье такое ж, как вашим собакам» — сказал Дубровский. В ответ на эту обиду псарь Троекурова ответил, что некоторые дворяне могут позавидовать собачей жизни, Дубровский обиделся. С тех пор дружба прекратилась. Разгневанный Кирилл Петрович сгоряча лишает Андрея его деревни, тот понервничал, слег и умер на глазах у сына Владимира. Кистенёвку вместе с людьми отдали во владения Троекурова.
4823/581=689/83. Если фраза "подходящая дробь" подразумевает подходящие дроби цепной дроби числа, то 689/83=8+1/(83/25) 83/25=3+1/(25/8) 25/8=3+1/8, т.е. разложение в цепную дробь будет [8;3,3,8] Значит подходящие дроби будут 8/1, 8+1/3=25/3 8+1/(3+1/3)=83/10 и последняя 8+1(3+1/(3+1/8))=689/83 Т.к. 689/83-83/10=1/830>0,001, то нужная по условию задачи подходящая дробь будет равна исходному числу 689/83. Погрешность в этом случае будет равна 0.
Если же слово "подходящая" подразумевает, "какая-нибудь отличающаяся от исходной" то берем, например, дробь 4823/581-1/(581*2)=9645/1162, которая дает погрешность 1/(581*2)=1/1162<0,001.
Андрей Дубровский имел единственную деревню, а для охоты у него было две гончих собаки. Троекуров держал великолепную псарню. «Псарня чудная, вряд людям вашим житье такое ж, как вашим собакам» — сказал Дубровский. В ответ на эту обиду псарь Троекурова ответил, что некоторые дворяне могут позавидовать собачей жизни, Дубровский обиделся. С тех пор дружба прекратилась. Разгневанный Кирилл Петрович сгоряча лишает Андрея его деревни, тот понервничал, слег и умер на глазах у сына Владимира. Кистенёвку вместе с людьми отдали во владения Троекурова.
Если фраза "подходящая дробь" подразумевает подходящие дроби цепной дроби числа, то
689/83=8+1/(83/25)
83/25=3+1/(25/8)
25/8=3+1/8, т.е. разложение в цепную дробь будет [8;3,3,8]
Значит подходящие дроби будут 8/1,
8+1/3=25/3
8+1/(3+1/3)=83/10
и последняя 8+1(3+1/(3+1/8))=689/83
Т.к. 689/83-83/10=1/830>0,001, то нужная по условию задачи подходящая дробь будет равна исходному числу 689/83. Погрешность в этом случае будет равна 0.
Если же слово "подходящая" подразумевает, "какая-нибудь отличающаяся от исходной" то берем, например, дробь 4823/581-1/(581*2)=9645/1162, которая дает погрешность 1/(581*2)=1/1162<0,001.