23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Объяснение:а) 2³ˣ⁺⁶ ≤ (1/4)ˣ⁻¹ , 2³ˣ⁺⁶ ≤ (2⁻²)ˣ⁻¹. 2³ˣ⁺⁶ ≤ 2²⁻²ˣ, основание показательной функции 2>1, значит функция у= 2ˣ -возрастающая, поэтому 3х+6≤2-2х ⇒ 5х≤-4 ⇒ х≤-4/5 ⇒ х≤ -0,8
б) (7/12)⁻²ˣ⁺³>(12/7)³⁺²ˣ ⇔ (12/7)²ˣ⁻³ >(12/7)³⁺²ˣ, основание показательной функции 12/7>1, значит функция у= (12/7)ˣ -возрастающая, поэтому 2х-3>3+2x 0x>6 нет реш, х=∅
в) 25⁻ˣ⁺³ ≥ (1/5)³ˣ⁻¹ ⇔(5²)⁻ˣ⁺³ ≥ (5⁻¹)³ˣ⁻¹ , 5⁻²ˣ⁺⁶ ≥ 5 ¹⁻³ˣ, основание показательной функции 5>1, значит функция у= 5ˣ -возрастающая, поэтому -2х+6≥1-3х ⇒ х≥-5, т.е. х∈[-5;+∞)
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Объяснение:а) 2³ˣ⁺⁶ ≤ (1/4)ˣ⁻¹ , 2³ˣ⁺⁶ ≤ (2⁻²)ˣ⁻¹. 2³ˣ⁺⁶ ≤ 2²⁻²ˣ, основание показательной функции 2>1, значит функция у= 2ˣ -возрастающая, поэтому 3х+6≤2-2х ⇒ 5х≤-4 ⇒ х≤-4/5 ⇒ х≤ -0,8
б) (7/12)⁻²ˣ⁺³>(12/7)³⁺²ˣ ⇔ (12/7)²ˣ⁻³ >(12/7)³⁺²ˣ, основание показательной функции 12/7>1, значит функция у= (12/7)ˣ -возрастающая, поэтому 2х-3>3+2x 0x>6 нет реш, х=∅
в) 25⁻ˣ⁺³ ≥ (1/5)³ˣ⁻¹ ⇔(5²)⁻ˣ⁺³ ≥ (5⁻¹)³ˣ⁻¹ , 5⁻²ˣ⁺⁶ ≥ 5 ¹⁻³ˣ, основание показательной функции 5>1, значит функция у= 5ˣ -возрастающая, поэтому -2х+6≥1-3х ⇒ х≥-5, т.е. х∈[-5;+∞)
г)(5/3)²ˣ⁻⁸<(9/25)⁻ˣ⁺³ , (5/3)²ˣ⁻⁸< ((5/3)⁻²)⁻ˣ⁺³ (5/3)²ˣ⁻⁸< (5/3)²ˣ⁻⁶
основание (5/3)>1 , значит 2х-8<2x-6⇒ 0x<2? что невозможно,значит нет реш , х=∅