По данным о весе набора школьных учебников составьте интервальную таблицу (с интервалом 0,5 кг) и по ней постройте гистограмму, используя относительные частоты : 1,5 кг; 2,2кг; 3,5кг; 3,8кг; 2,5кг; 2,4кг; 2,8кг; 2,5кг; 2,9кг; 3,1 кг; 2,9кг; 2,7 кг; 3,9кг; 3,4кг; 2,1 кг; 4,4кг; 4,1 кг; 4,5кг; 3,9кг; 4,1 кг
1. х- ребро было, тогда объем был х в кубе = х^3=у см куб
добавили к ребру 3, тогда стало х +3, значит объём стал (х+3)^3 = у+513, тогда
подставим у=х^3 в (х+3)^3 = у+513, получим:
(х+3)^3 = х^3+513
х^3-х^3+9х^2+27х+27-513=0
9х^2+27х-486=0
х^2+3х-54=0
Д=9+216=225
х1=(15+3)/2=9, тогда объём был 9*9*9=729, стал 12*12*12=1728 - не удовлетворяет условию
х2=(15-3)/2=6, тогда объём был 6*6*6=216, стал 9*9*9=729, 729-216=513, значит
изначально ребро куба было 6.
ответ: ребро в начале = 6
2.а) 3x^2-25х-28=0
D=625+12*28=961=31^2
x1=(25+31)/6=28/3=9 1/3
x1=(25-31)/6=-6/6=-1
3x^2-25х-28=(3x-28)(x+1)
б) 2х^2+13х-7=0
D=169+56=225=15^2
x1=(-13+15)/4=0,5
x2=(-13-15)/4=-7
2х^2+13х-7=(2x-1)(x+7)
Отметь как лучшее
Объяснение:
Исследовать функцию y=-x^4+8x^2-9 и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.
Квадратное уравнение, решаем относительно n:
Ищем дискриминант:
D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;
Дискриминант больше 0, уравнение имеет 2 корня:
n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;
n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.
Обратная замена: х = √n.
x₁ = √1,354249 = 1,163722, x₂ = -1,163722.
x₃ = √6,645751 = 2,57793, x₄ = -2,577935.
Получаем 4 точки пересечения с осью Ох:
(1,163722; 0), (-1,16372; 0), (2,57793; 0), (-2,57793; 0).
x₃ = √6,645751 = 2,57793,
Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3
y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
8. Искомый график функции в приложении.
Подробнее - на -
Объяснение: