По прямой движется точка зависимость скорости от времени выражается формулой v=v(t) пусть для определенности v(t)>0 найти перемещение точки за промежуток времени {а,б
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Объяснение:
1). (x+3)(2-x)/x+6≥0 Умножим обе стороны неравенства на x+6 и получим (x+3)(2-x)≥0. Отсюда (x+3)≥0 и (2-x)≥0. Тогда x≥-3 и x≤2
2). 2х²+7х+5>0 Приравняем данное неравенство к равенству.
2х²+7х+5 = 0
D=-7²-4·2·5 = 49-40 = √9 = 3²
x1= (-7+3)/2·2 = -4/4 = -1
x2= (-7-3)/4 = - 2,5
3). (x-2)²(x²+6x-9)<0
(x-2)²<0 и (x²+6x-9)<0
Решим сначала (x-2)²<0
= x²-2·2·x+2²<0 = x²-4x+4<0 Приравняем данное неравенство к нолю и получим x²-4x+4=0
D=-4+²-4·1·4=16-16+ = √0 = 0
x1 = (4+0)/2·1= 4/2 = 2
x2 = (4-0)/2·1= 4/2 = 2
Теперь решим (x²+6x-9)<0. Приравняем данное неравенство к нолю и получим x²+6x-9=0
D= 6²-4·1·(-9) = 36+36 = √72
x1 = (-6+√72)/2 = -3+(√72/2)
x2 = (-6-√72)/2 = -3-(√72/2)
4). x²-5x+4/x³-64>0 Умножим обе стороны неравенства на x³-64 и получим: x²-5x+4>0. Приравняем данное неравенство к нолю.
x²-5x+4=0
D=-5²-4·1·4 = 25-16 = √9 = 3²
x1= (5+3)0/2= 8/2= 4
x2= (5-3)/2 = 2/2 = 1
5). (x-2)(2+x)(5-x)≤0 Отсюда (x-2)≤0 (2+x)≤0 (5-x)≤0
Тогда: x≤2, x≤-2 и x≥5