Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
Пусть в стелаже n полок. Задачу будем решать при формул арифметической прогрессии. аn = a1 +(n -1)d Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5 n - полок а1 =21 аn = 21 + (n - 1)*5 - книг на последней полке Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6 (n -1) - полок, т.к. полок на 1 меньше а1 =21 аn = 21 + ((n -1)- 1)*6 - книг на последней полке Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2 5n² + 37n = 6n² + 24n -30 n² - 13n -30 =0 Д = 169 +120 = 289 √Д = 17 n =(13 + 17)/2 = 15 ответ: в стелаже 15 полок.
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
Задачу будем решать при формул арифметической прогрессии.
аn = a1 +(n -1)d
Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5
n - полок
а1 =21
аn = 21 + (n - 1)*5 - книг на последней полке
Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6
(n -1) - полок, т.к. полок на 1 меньше
а1 =21
аn = 21 + ((n -1)- 1)*6 - книг на последней полке
Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2
5n² + 37n = 6n² + 24n -30
n² - 13n -30 =0
Д = 169 +120 = 289
√Д = 17
n =(13 + 17)/2 = 15
ответ: в стелаже 15 полок.