Пусть х - объем части всего груза, который перевозит за 1 рейс 1й грузовик, у - объем части всего груза, который перевозит за 1 рейс 2й грузовик.
За 15 рейсов совместной работы оба грузовика перевезли объем груза, равный 15(х+у), а по условию сказано, что таким образом вся работа была выполнена, т.е.15(х+у)=1.
За 12 рейсов 1й грузовик перевезет объем, равный 12х груза, а за 20 рейсов 2й перевезет объем, равный 20у груза. По условию свою работу грузовики выполнили каждый поочереди, поэтому перевезли весь груз, т.е.12х+20у=1.
Получим систему уравнений:
{15(х+у)=1,
{12х+20у=1.
Далее решим ее сложения:
{15х+15у=1, | x(-4) <==> {-60х-60у=-4, <==>
{12х+20у=1. | x3 {36х+60у=3.
-24x=-1
<==> {x=1/24
{y=1/40
Значит, первому грузовику требуется 24 рейса, а второму 40 рейсов при самостоятельной работе.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Примем объем всего груза за 1.
Пусть х - объем части всего груза, который перевозит за 1 рейс 1й грузовик, у - объем части всего груза, который перевозит за 1 рейс 2й грузовик.
За 15 рейсов совместной работы оба грузовика перевезли объем груза, равный 15(х+у), а по условию сказано, что таким образом вся работа была выполнена, т.е.15(х+у)=1.
За 12 рейсов 1й грузовик перевезет объем, равный 12х груза, а за 20 рейсов 2й перевезет объем, равный 20у груза. По условию свою работу грузовики выполнили каждый поочереди, поэтому перевезли весь груз, т.е.12х+20у=1.
Получим систему уравнений:
{15(х+у)=1,
{12х+20у=1.
Далее решим ее сложения:
{15х+15у=1, | x(-4) <==> {-60х-60у=-4, <==>
{12х+20у=1. | x3 {36х+60у=3.
-24x=-1
<==> {x=1/24
{y=1/40
Значит, первому грузовику требуется 24 рейса, а второму 40 рейсов при самостоятельной работе.
Дана функция
Производная её равна: y' = (3x^2*x^2 - 2x*(x^3 + 4))/x^4 = (x^3 - 8)/x^3.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -1 0 1 2 3
y' = 9 - -7 0 0,7037.
• Минимум функции в точке: х = 2, у = 3.
• Максимума функции нет.
• Возрастает на промежутках: (-∞; 0) U (2; ∞).
• Убывает на промежутке: (0; 2).