1. Это самый простой случай. можно интеграл разбить на 2, и все, что нужно уметь- брать табличные интегралы (или знать таблицу дифференцирования): ∫ x dx - 3∫ x^2 dx=1/2 x^2 - 3* 1/3 x^3= 1/2 x^2 - x^3 на пределах интегрирования получится 1/2 (2^2-1)- (2^3-1)=1/2*3-7 = -11/2 2. Здесь тоже довольно просто- нужно знать производную тангенса. ∫1/Cos^2(2x)dx= \делаем замену переменных: 2x=t, 2dx=dt\ = 1/2 ∫ 1/Cos^2[t] dt= 1/2 Tan[t], но уже на пределах от нуля до pi/3- посмотри на замену переменных. Тогда интграл будет равен 1/2(Tan[pi/3]-Tan[0])=√3/2 3. Здесь тоже не так трудно, как может показаться на первый взгляд ∫(2-3x)^5 dx = -1/(3*6) (2-3x)^6 на пределах интегрирования даст -1/18 [ (2-3*1)^6-(2-3(1/3))^6 ] =-1/18 (1- 1)=0 4. Воспользовавшись четностью подынтегральной функции, можно записать как 2 интеграла от нуля до 3 2∫√(9-x^2)dx= \ x=3sint, dx=3cost dt\ = 2∫√(9-9sin^2(t)) cos(t) dt= 6∫√(1-sin^2(t)) cost dt= 18∫cos^2(t)dt=9∫(1+cos(2t))dt=9t+9/2sin(2t) на подстановке даст, учтя смену пределов интегрирования (t=pi/2, t=0) получим 9pi/2 5. По сути это уравнение в слегка усложненной записи. Разделением интегралов на 2 и интегрированием, зная, что ∫x^p dx= 1/(p+1) * x^(p+1), получим 1/4(x^4)+5/2 x^2 На пределах интегрирования это даст 1/4( (a+2)^4- a^4) + 5/2 ((a+2)^2-a^2) = 4+8a+6a^2+2a^3 + 10+10a = 14+18a+6a^2+2a^3 = 0 по условию
Тут мы должны учесть некоторое обстоятельство. В ящике шаров желтых 2, а мы должны вытащить четыре. Мы не можем этого сделать. Вероятность 0. Однако, я рассмотрю вероятность всех шаров, может просто в условии ошибка. Рассмотрим вероятность вытаскивания черного шара. Вероятность - число, равное отношению благоприятных событий к общему их количеству. Итак, вероятность для черных равна. 12\(12+7+2)=12\21. Вероятность вытаскивания желтого шара равна 2\21. Казалось, формула (((Вероятность вытаскивания черного шара)^(кол-во черных))*((Вероятность вытаскивания желтого шара)^(кол-во желтых))=ответ) работает. Но увы. ответ: 0
∫ x dx - 3∫ x^2 dx=1/2 x^2 - 3* 1/3 x^3= 1/2 x^2 - x^3 на пределах интегрирования получится 1/2 (2^2-1)- (2^3-1)=1/2*3-7 = -11/2
2. Здесь тоже довольно просто- нужно знать производную тангенса.
∫1/Cos^2(2x)dx= \делаем замену переменных: 2x=t, 2dx=dt\ = 1/2 ∫ 1/Cos^2[t] dt= 1/2 Tan[t], но уже на пределах от нуля до pi/3- посмотри на замену переменных. Тогда интграл будет равен 1/2(Tan[pi/3]-Tan[0])=√3/2
3. Здесь тоже не так трудно, как может показаться на первый взгляд
∫(2-3x)^5 dx = -1/(3*6) (2-3x)^6 на пределах интегрирования даст
-1/18 [ (2-3*1)^6-(2-3(1/3))^6 ] =-1/18 (1- 1)=0
4. Воспользовавшись четностью подынтегральной функции, можно записать как 2 интеграла от нуля до 3
2∫√(9-x^2)dx= \ x=3sint, dx=3cost dt\ = 2∫√(9-9sin^2(t)) cos(t) dt= 6∫√(1-sin^2(t)) cost dt= 18∫cos^2(t)dt=9∫(1+cos(2t))dt=9t+9/2sin(2t) на подстановке даст, учтя смену пределов интегрирования (t=pi/2, t=0) получим 9pi/2
5. По сути это уравнение в слегка усложненной записи.
Разделением интегралов на 2 и интегрированием, зная, что ∫x^p dx= 1/(p+1) * x^(p+1), получим 1/4(x^4)+5/2 x^2
На пределах интегрирования это даст
1/4( (a+2)^4- a^4) + 5/2 ((a+2)^2-a^2) = 4+8a+6a^2+2a^3 + 10+10a = 14+18a+6a^2+2a^3 = 0 по условию
ответ: 0