Построить график функции: а)y= 2x^2 б) y=(x+2)^2-1 найдите промежутки возрастания (убывания) функции. укажите значение x при котором функция достигнет наибольшего (наименьшего) значения.
Пусть b1,b2,,bn, - члены прогрессии, а q - её знаменатель. Сумма прогрессии S=b1/(1-q). По условию, b1/(1-q)=6. Одновременно по условию S1=b1²+b2²++bn²+=12. Но S=b1*(1+q+q²+q³), а S1=b1²*(1+q²+q⁴+q⁶+). Получена система уравнений:
b1*(1+q+q²+q³)=6
b1²*(1+q²+q⁴+q⁶+)=12
Возведём первое уравнение в квадрат:
b1²*(1+q+q²+q³)²=36
b1²*(1+q²+q⁴+q⁶+)=12
Разделив теперь первое уравнение на второе, придём к уравнению относительно q: (1+q+q²+q³+)²/(1+q²+q⁴+q⁶+)=3. Но в скобках числителя - бесконечная геометрическая прогрессия со знаменателем q, её сумма S2=1/(1-q). В скобках знаменателя - бесконечная геометрическая прогрессия со знаменателем q², её сумма S3=1/(1-q²). Отсюда следует уравнение (1-q²)/(1-q)²=3, которое приводится к квадратному уравнению 2*q²-3*q+1=0. Решая его, находим q1=1 и q2=1/2. Но при q=1 сумма прогрессии была бы равна бесконечности, поэтому q=1/2. ответ: 1/2.
В рассматриваемом шестиразрядном числе abcdef, разряд “a” может принимать значения от 1 до 9 (9 значений), разряд “b” может принимать значения от 0 до 0 (1 значение), разряд “c” может принимать значения от 0 до 9 (10 значений), разряд “d” может принимать значения от 0 до 9 (10 значений), разряд “e” может принимать значения от 4 до 4 (1 значение), разряд “а” может принимать значения от 0 до 9 (10 значений).
Посчитаем всевозможное количество значений, которое может принимать число abcdef.
N=9*1*10*10*1*10=9000
Точно также посчитаем всевозможное количество значений, которое может принимать четырехзначное число wxyz, у которого разряд “w” может принимать значения 1 до 9 (9 значений), разряд “x” может принимать значения от 0 до 9 (10 значений), разряд “y” может принимать значения от 0 до 9 (10 значений), разряд “я” может принимать значения от 0 до 9 (10 значений).
M=9*10*10*10=9000
Как видим M=N. Число шестизначных чисел с двумя неизменяемыми разрядами равно числу четырехзначных чисел.
Пусть b1,b2,,bn, - члены прогрессии, а q - её знаменатель. Сумма прогрессии S=b1/(1-q). По условию, b1/(1-q)=6. Одновременно по условию S1=b1²+b2²++bn²+=12. Но S=b1*(1+q+q²+q³), а S1=b1²*(1+q²+q⁴+q⁶+). Получена система уравнений:
b1*(1+q+q²+q³)=6
b1²*(1+q²+q⁴+q⁶+)=12
Возведём первое уравнение в квадрат:
b1²*(1+q+q²+q³)²=36
b1²*(1+q²+q⁴+q⁶+)=12
Разделив теперь первое уравнение на второе, придём к уравнению относительно q: (1+q+q²+q³+)²/(1+q²+q⁴+q⁶+)=3. Но в скобках числителя - бесконечная геометрическая прогрессия со знаменателем q, её сумма S2=1/(1-q). В скобках знаменателя - бесконечная геометрическая прогрессия со знаменателем q², её сумма S3=1/(1-q²). Отсюда следует уравнение (1-q²)/(1-q)²=3, которое приводится к квадратному уравнению 2*q²-3*q+1=0. Решая его, находим q1=1 и q2=1/2. Но при q=1 сумма прогрессии была бы равна бесконечности, поэтому q=1/2. ответ: 1/2.
В рассматриваемом шестиразрядном числе abcdef, разряд “a” может принимать значения от 1 до 9 (9 значений), разряд “b” может принимать значения от 0 до 0 (1 значение), разряд “c” может принимать значения от 0 до 9 (10 значений), разряд “d” может принимать значения от 0 до 9 (10 значений), разряд “e” может принимать значения от 4 до 4 (1 значение), разряд “а” может принимать значения от 0 до 9 (10 значений).
Посчитаем всевозможное количество значений, которое может принимать число abcdef.
N=9*1*10*10*1*10=9000
Точно также посчитаем всевозможное количество значений, которое может принимать четырехзначное число wxyz, у которого разряд “w” может принимать значения 1 до 9 (9 значений), разряд “x” может принимать значения от 0 до 9 (10 значений), разряд “y” может принимать значения от 0 до 9 (10 значений), разряд “я” может принимать значения от 0 до 9 (10 значений).
M=9*10*10*10=9000
Как видим M=N. Число шестизначных чисел с двумя неизменяемыми разрядами равно числу четырехзначных чисел.