8 изначально, 9 после ускорения.
Объяснение:
Представим заказ за y, а ежедневную норму как x и получаем уравнения:
20x=y;
18(x+1) = y + 2;
Раскроем скобки 2го уравнения:
18x + 18 = y + 2;
Перенесем 12 через знак равенства и получим:
18x + 18 + (-2) = y;
18x + 16 = y;
Получаем систему уравнений:
20x = y;
Подставим первую часть любого уравнения во вторую часть другого уравнения:
18x + 16 = 20x;
18x + 16 + (-20x) = 0;
-2x + 16 = 0;
-2x = -16
x = (-16) / (-2) = 8
Изначально он делал 8, но если надо найти сколько он выполнил при ускорении работы то прибавим к ответу 1:
8 + 1 = 9.
y = x4 – 8x2 + 5
1.Найдем точки экстремума функции, т.е. точки, в которых y’ = 0:
y’ = (x4 – 8x2 + 5)’ = 4x3 – 16x.
4x3 – 16x = 0;
4х (х2 – 4) = 0;
4х (х – 2) (х + 2) = 0;
х1 = 0;
х2 = -2;
х3 = 2.
2. Промежутку [-3; 2] принадлежат все найденные точки, поэтому рассмотрим значение функции на концах отрезка и в точках экстремума.
При х = -3, у = 81 – 72 + 5 = 14.
При х = -2, у = 16 – 32 + 5 = -11.
При х = -0, у = 5.
При х = 2, у = 16 – 32 + 5 = -11.
Таким образом, yнаим = у(-2) = у(2) = -11, yнаиб = у(-3) = 14.
ответ: yнаим = -11, yнаиб = 14
8 изначально, 9 после ускорения.
Объяснение:
Представим заказ за y, а ежедневную норму как x и получаем уравнения:
20x=y;
18(x+1) = y + 2;
Раскроем скобки 2го уравнения:
18x + 18 = y + 2;
Перенесем 12 через знак равенства и получим:
18x + 18 + (-2) = y;
18x + 16 = y;
Получаем систему уравнений:
20x = y;
18x + 16 = y;
Подставим первую часть любого уравнения во вторую часть другого уравнения:
18x + 16 = 20x;
18x + 16 + (-20x) = 0;
-2x + 16 = 0;
-2x = -16
x = (-16) / (-2) = 8
Изначально он делал 8, но если надо найти сколько он выполнил при ускорении работы то прибавим к ответу 1:
8 + 1 = 9.
y = x4 – 8x2 + 5
1.Найдем точки экстремума функции, т.е. точки, в которых y’ = 0:
y’ = (x4 – 8x2 + 5)’ = 4x3 – 16x.
4x3 – 16x = 0;
4х (х2 – 4) = 0;
4х (х – 2) (х + 2) = 0;
х1 = 0;
х2 = -2;
х3 = 2.
2. Промежутку [-3; 2] принадлежат все найденные точки, поэтому рассмотрим значение функции на концах отрезка и в точках экстремума.
При х = -3, у = 81 – 72 + 5 = 14.
При х = -2, у = 16 – 32 + 5 = -11.
При х = -0, у = 5.
При х = 2, у = 16 – 32 + 5 = -11.
Таким образом, yнаим = у(-2) = у(2) = -11, yнаиб = у(-3) = 14.
ответ: yнаим = -11, yнаиб = 14