Постройте график функции у=(х+3)²-1.Используя этот график, найдите: 1)Нули функций 2)При каких значениях аргумента функция принимает положительные значения 3)Промежуток возрастания и промежуток убывания функции 4)Область значений функции
4) Так как осуществляется один из вариантов гендерного состава команды (2 и 2, или 3 и 1, или 4), то все которыми могут осуществляться эти варианты, складываются:
выбрать команду из 4 человек , в которую входит хотя бы 2 мальчика.
Пусть гипотенуза прямоугольного треугольника равна х см, тогда первый катет этого треугольника равен (х - 6) см, а второй катет равен (х - 6) + 3 = х - 3 см. По условию задачи известно, что площадь данного треугольника (площадь прямоугольного треугольника равна половине произведения его катетов) равна 1/2 * (х - 6)(х - 3) см^2 или 54 см^2. Составим уравнение и решим его.
Объяснение:
Порядок выбора не важен, поэтому применяется основная формула - сочетания без повторения.
1)
С₆² = 6!/(2!*4!) = 6*5/2 = 15 сп. для выбора 2 мальчиков из 6
С₇² = 7!/(2!*(7-2)! ) = 7*6*5!/ (2*5!) = 7*3 = 21 сп. для выбора 2 девочек из 7
Так как выбор данной команды осуществляется двумя последовательными действиями выбора девочек и мальчиков, то:
С₆² *С выбрать 2 мальчиков и 2 девочек
2)
С₆³ = 6!/(3!*(6-3)!) = 6*5*4*3!/2*3*3! = 20 сп. выбрать 3 мальчиков из 6
С₇¹ = 7 сп. выбрать 1 девочку из 7
С₆³ * С выбрать 3 мальчика и 1 девочку
3)
С выбрать 4 мальчиков из 6
4) Так как осуществляется один из вариантов гендерного состава команды (2 и 2, или 3 и 1, или 4), то все которыми могут осуществляться эти варианты, складываются:
выбрать команду из 4 человек , в которую входит хотя бы 2 мальчика.
ответ
Пусть гипотенуза прямоугольного треугольника равна х см, тогда первый катет этого треугольника равен (х - 6) см, а второй катет равен (х - 6) + 3 = х - 3 см. По условию задачи известно, что площадь данного треугольника (площадь прямоугольного треугольника равна половине произведения его катетов) равна 1/2 * (х - 6)(х - 3) см^2 или 54 см^2. Составим уравнение и решим его.
1/2 * (х - 6)(х - 3) = 54;
(х - 6)(х - 3) = 54 * 2;
х^2 - 3х - 6х + 18 = 108;
х^2 - 9х + 18 - 108 = 0;
х^2 - 9х - 90 = 0;
D = b^2 - 4ac;
D = (-9)^2 - 4 * 1 * (-90) = 81 + 360 = 441; √D = 21;
x = (-b ± √D)/(2a);
x1 = (9 + 21)/2 = 30/2 = 15 (см);
х2 = (9 - 21)/2 = -12/2 = -6 - длина не может быть отрицательной.
ответ. 15 см.