Пусть во второй бригаде х рабочих, тогда в первой 2х рабочих. В первой бригаде число рабочих уменьшилось на 5, значит их стало 2х-5. А во второй число рабочих уменьшилось на 2, значит их стало х-2. Так как в первой бригаде рабочих стало на 7 больше, чем во второй, то составим и решим уравнение: 2х-5-(х-2)=7 2х-5-х+2=7 х-3=7 х=7+3 х=10 значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих. ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
Если в уравнении рассматриваются частные случаи sinx=0 и cosx=0, то пользуются более простыми формулами, и пользуются периодом П, так как нули синуса и косинуса повторяются через период, равный П, хотя в общем случае наименьший положительный период для этих функций равен 2П.
sinx=0, x=πn
cosx=0, x=π/2+πn
В общем случае sinx=a, x=(-1)^n*arcsina+πn и в случае sinx=0 можно было бы записать
х=(-1)^n*arcsin0+πn=(-1)^n*0+πn=πn.
Если решаем ур-ие sinx=1, то x=π/2+2πn - частный случай, а в общем случае писали бы х=(-1)^n*arcsin1+πn=(-1)^n*π/2+πn - ,более сложный вид, но правольная запись.
sinx=-1 x=-π/2+2πn - частный случай
Если cosx=a,то х=±arccosa+2πn.Можно для ур-ия cosx=0 записать решение через общую формулу х=±arccos0+2πn=±π/2+2πn (это более сложная запись, но правильная)
cosx=1, x=2πn
cosx=-1, x=π+2πn
Для уравнений tgx=a, x=arctga+πn
ctgx=a, x=arcctga+πn
Итак, если использовать общие формулы, то период только для косинуса берём 2πn. а для остальных функций используем πn.
2х-5-(х-2)=7
2х-5-х+2=7
х-3=7
х=7+3
х=10
значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих
а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих.
ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
Если в уравнении рассматриваются частные случаи sinx=0 и cosx=0, то пользуются более простыми формулами, и пользуются периодом П, так как нули синуса и косинуса повторяются через период, равный П, хотя в общем случае наименьший положительный период для этих функций равен 2П.
sinx=0, x=πn
cosx=0, x=π/2+πn
В общем случае sinx=a, x=(-1)^n*arcsina+πn и в случае sinx=0 можно было бы записать
х=(-1)^n*arcsin0+πn=(-1)^n*0+πn=πn.
Если решаем ур-ие sinx=1, то x=π/2+2πn - частный случай, а в общем случае писали бы х=(-1)^n*arcsin1+πn=(-1)^n*π/2+πn - ,более сложный вид, но правольная запись.
sinx=-1 x=-π/2+2πn - частный случай
Если cosx=a,то х=±arccosa+2πn.Можно для ур-ия cosx=0 записать решение через общую формулу х=±arccos0+2πn=±π/2+2πn (это более сложная запись, но правильная)
cosx=1, x=2πn
cosx=-1, x=π+2πn
Для уравнений tgx=a, x=arctga+πn
ctgx=a, x=arcctga+πn
Итак, если использовать общие формулы, то период только для косинуса берём 2πn. а для остальных функций используем πn.