x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q:
x₁ + x₂= -p
x₁ · x₂= q
14 + x₂ = 26
x₂=26-14=12
q=14*12=168
x²-26x+168=0 - при желании можно проверить, подставив в уравнение корни, можно для проверки решить через дискриминант.
144-312+168=0
задача
70 м; 110 м
Периметр прямоугольника со сторонами а и b: Р = 2 * (a + b).
Площадь прямоугольника: S = a * b.
Следовательно, получим систему уравнений:
2 * (a + b) = 360.
a * b = 7700.
Решаешь системой уравнений
(a + b) =230
a=7700/b
7700/b+b=230
b^2 – 230 * b + 7700=0
1) (х-1)(х+7)
1) (х-1)(х+7)х*х+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+8
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³х⁴-8х
x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, а произведение корней равно свободному члену q:
x₁ + x₂= -p
x₁ · x₂= q
14 + x₂ = 26
x₂=26-14=12
q=14*12=168
x²-26x+168=0 - при желании можно проверить, подставив в уравнение корни, можно для проверки решить через дискриминант.
144-312+168=0
задача
70 м; 110 м
Периметр прямоугольника со сторонами а и b: Р = 2 * (a + b).
Площадь прямоугольника: S = a * b.
Следовательно, получим систему уравнений:
2 * (a + b) = 360.
a * b = 7700.
Решаешь системой уравнений
(a + b) =230
a=7700/b
7700/b+b=230
b^2 – 230 * b + 7700=0
1) (х-1)(х+7)
1) (х-1)(х+7)х*х+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+8
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³х⁴-8х