(x - 7)*(3x + 1) = (x + 5)^2, 3x^2 - 20x - 7 = x^2 + 10x + 25, 2x^2 - 30x - 32 = 0, x^2 - 15x - 16 = 0, x^2 + x - 16x - 16 = 0, x(x + 1) - 16(x + 1) = 0, (x + 1)*(x - 16) = 0, x + 1 = 0 или x - 16 = 0, x = -1 или x = 16. Искомые числа: 1) если х = -1, то - это -1 - 7 = -8, -1 + 5 = 4 и 3*(-1) + 1 = -2; 2) если х = 16, то это числа 16 - 7 = 9, 16 + 5 = 21 и 3*16 + 1 = 49. Действительно, в случае (1) первое число -8, второе -8*(-0,5) = 4 и третье 4*(-0,5) = -2, а в случае (2) первое 9, второе 9*(7/3) = 21 и третье 21*(7/3) = 49. ответ: 1) -8, 4 и -2; 2) 9, 21 и 49. Пояснение. При решении задание использовано свойство членов геометрической прогрессии, в котором произведение двух членов прогрессии равно квадрату того ее члена, который расположен ровно посередине между первыми двумя членами. Удачи!
Решение задачи с условием, что три последовательных числа - четные. (Ибо сумма любых трех последовательных чисел не кратна 6).
Пусть x (x∈N) - первое из трех последовательных четных чисел, тогда второе и третье равны x+2 и x+4 соответственно.
Запишем сумму x+x+2+x+4=3x+6=3(x+6)
По признаку делимости, число кратно 6, если оно кратно 2 и 3.
Очевидно, что 3(x+6) кратно трем, т.к. есть множитель 3. С учетом того, что x - четное число, можно заявить, что x+6 делится на 2, а значит все выражение кратно 6.
Пусть x (x∈N) - первое из трех последовательных четных чисел, тогда второе и третье равны x+2 и x+4 соответственно.
Запишем сумму
x+x+2+x+4=3x+6=3(x+6)
По признаку делимости, число кратно 6, если оно кратно 2 и 3.
Очевидно, что 3(x+6) кратно трем, т.к. есть множитель 3. С учетом того, что x - четное число, можно заявить, что x+6 делится на 2, а значит все выражение кратно 6.
Доказано.