Функция линейная, если наивысшая степень при переменной равна 1, то есть представима в виде u = a*t + b Поэтому, если нам удастся представить нашу функцию в таком виде, значит нам удастся доказать линейность предложенной функции. Разложим числитель и знаменатель предложенной функции на элементарные множители t^4 - 8*t^2 + 16 = (t^2 - 4)^2 = (t-2)*(t-2)*(t+2)*(t+2) (t+2)*(t^2-4) = (t+2)*(t+2)*(t-2) Таким образом, наша функция имеет вид u=(t-2)*(t-2)*(t+2)*(t+2)/(t+2)*(t+2)*(t-2). А вот теперь ЕСЛИ сомножитель в знаменателе ОТЛИЧЕН ОТ НУЛЯ, на него можно сократить, после сокращения получим u=t-2 то есть в самом деле функция линейная, при этом а=1, b=-2. ОДНАКО, она линейная ТОЛЬКО если действительно наше предположение, то есть при условии t#+-2(при этих значениях некоторые сомножители знаменателя обращаются в 0, а на 0 делить нельзя!). Таким образом ответ u=t-2 , область определения t#+-2
Гораздо интереснее ответить на вопрос А что же с функцией происходит в этих особых точках? В нашем случае всё замечательно, значения исходной функции в этих точках НЕ СУЩЕСТВУЕТ, ОДНАКО пределы как слева, так и справа существуют и равны друг другу. То есть функция практически непрерывная и гладкая, такие функции можно ДОПОЛНИТЬ двумя точками(значения пределов) и функция становится совсем линейной. в нашем случае можно ДОПОЛНИТЬ таким образом u(-2)=-4 u(2)= 0 но это уже совсем другая история и к решению нашей исходной задачи, вообще говоря, не имеет никакого отношения.
ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8
Поэтому, если нам удастся представить нашу функцию в таком виде, значит нам удастся доказать линейность предложенной функции.
Разложим числитель и знаменатель предложенной функции на элементарные множители
t^4 - 8*t^2 + 16 = (t^2 - 4)^2 = (t-2)*(t-2)*(t+2)*(t+2)
(t+2)*(t^2-4) = (t+2)*(t+2)*(t-2)
Таким образом, наша функция имеет вид
u=(t-2)*(t-2)*(t+2)*(t+2)/(t+2)*(t+2)*(t-2).
А вот теперь ЕСЛИ сомножитель в знаменателе ОТЛИЧЕН ОТ НУЛЯ, на него можно сократить, после сокращения получим
u=t-2
то есть в самом деле функция линейная, при этом а=1, b=-2.
ОДНАКО, она линейная ТОЛЬКО если действительно наше предположение, то есть при условии t#+-2(при этих значениях некоторые сомножители знаменателя обращаются в 0, а на 0 делить нельзя!).
Таким образом ответ
u=t-2 , область определения t#+-2
Гораздо интереснее ответить на вопрос А что же с функцией происходит в этих особых точках? В нашем случае всё замечательно, значения исходной функции в этих точках НЕ СУЩЕСТВУЕТ, ОДНАКО пределы как слева, так и справа существуют и равны друг другу. То есть функция практически непрерывная и гладкая, такие функции можно ДОПОЛНИТЬ двумя точками(значения пределов) и функция становится совсем линейной.
в нашем случае можно ДОПОЛНИТЬ таким образом
u(-2)=-4
u(2)= 0
но это уже совсем другая история и к решению нашей исходной задачи, вообще говоря, не имеет никакого отношения.