Расстояние между центрами двух окружностей равно d и меньше разности R - R, их радиусов (R. > R). Найдите най- меньшее и наибольшее расстояния между точками, располо- женными на данных окружностях.
Рассмотрим по порядку: 1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21. 2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10 3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b 4. Неверно, ибо a > b
Рассмотрим по порядку: 1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21. 2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10 3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b 4. Неверно, ибо a > b
1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21.
2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10
3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b
4. Неверно, ибо a > b
1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21.
2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10
3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b
4. Неверно, ибо a > b