Абсолютной величиной (или абсолютным значением) отрицательного числаназывается положительное число, получаемое от перемены его знака (-) на обратный (+). Абсолютная величина -5 есть +5, т. е. 5. Абсолютной величиной положительного числа (а также числа 0) называется само это число.
Знак абсолютной величины - две прямые черты, в которые заключается число, абсолютная величина которого берется. Например,
|-5| = 5, |+5| = 5, | 0 | = 0.
Сложение чисел с одинаковым знаком.а) При сложении двух чисел с одинаковым знаком складываются их абсолютные величины и перед суммой ставится общий их знак.
Примеры. (+8) + (+11) = 19; (-7) + (-3) = -10.
б) При сложении двух чисел с разными знаками из абсолютной величины одного из них вычитается абсолютная величина другого (меньшая из большей) а ставится знак того числа, у которого абсолютная величина больше.
Примеры. (-3) + (+12) = 9; (-3) + (+1) = -2.
Вычитание чисел с разными знаками.Вычитание одного числа из другого можно заменить сложением; при этом уменьшаемое берется со своим знаком, а вычитаемое с обратным.
Замечание. При выполнении сложения и вычитания, особенно когда имеем дело с несколькими числами, лучше всего поступать так: 1) освободить все числа от скобок, при этом перед числом поставить знак «+ », если прежний знак перед скобкой был одинаков со знаком в скобке, и « -», если он был противоположен знаку в скобке; 2) сложить абсолютные величины всех чисел, имеющих теперь слева знак +; 3) сложить абсолютные величины всех чисел, имеющих теперь слева знак -; 4) из большей суммы вычесть меньшую и поставить знак, соответствующий большей сумме.
Результат есть отрицательное число -29, так как большая сумма (48) получилась от сложения абсолютных величин тех чисел, перед которыми стоили минусы в выражении -30 + 17 – 6 -12 + 2. На это последнее выражение можно смотреть и как на сумму чисел -30, +17, -6, -12, +2, и как на результат последовательного прибавления к числу -30 числа 17, затем вычитания числа 6, затем вычитания 12и, наконец, прибавления 2. Вообще на выражение а - b + с - d и т. д. можно смотреть и как на сумму чисел (+а), (-b), (+с), (-d), и как на результат таких последовательных действий: вычитания из (+а) числа (+b) , прибавления ( +c), вычитании ( +d) и т. д.
Умножение чисел с разными знакамиПри умножении двух чисел умножаются их абсолютные величины и перед произведением ставится знак плюс, если знаки сомножителей одинаковы, и минус, если они разные.
При перемножении нескольких сомножителей знак произведения положителен, если число отрицательных сомножителей четно, и отрицателен, если число отрицательных сомножителей нечетно.
Деление чисел с разными знакамиПри делении одного числа на другое делят абсолютную величину первого на абсолютную величину второго и перед частным ставится знак плюс, если знаки делимого и делителя одинаковы, и минус, если они разные (схема та же, что для умножения).
1) (1,75; 5,75)
2) (3; 3)
3) у = 7х
Объяснение:
Точкой пересечения графиков функций будет точка, (х,у), подходящая для обоих равенств.
То есть строго говоря это такая точка (х, у), где х и у являются решением системы уравнений:
И искомые координаты точки будут (1,75; 5,75)
Можно решить проще:
Чтобы найти абсциссу (х) точки пересечения, приравняем
А ординату (у) точки пересечения найдем, подставив найденное значение (х) в любое из уравнений:
Например, в y = x + 4
И искомые координаты точки будут (1,75; 5,75)
ответ (1,75; 5,75)
2.
Найти точку графика, абсцисса которой равна ординате
То есть требуется найти такую точку (х,у) графика,
у которой х = у.
Строго говоря, тут также требуется решение системы:
Это как бы пересечение двух графиков:
у = 2х - 3 и у = х
Но можно и проще.
Найти точку графика, абсцисса которой равна ординате, т.е. у = х.
Значит, подставляем х вместо у в уравнение;
А так как по условию у = х, то
И искомые координаты точки будут (3; 3)
ответ: (3; 3)
3.
График линейной функции проходит через начало координат (т.е. точку О(0; 0)) и точку А(3; 21)
Следовательно, уравнение имеет форму
y = kx + b
причем т.к. график проходит через (0;0), следовательно
у(0) = 0 => 0 = k•0 + b <=> b = 0
а значит уравнение прямой имеет форму:
y = kx + 0 <=> y = kx
И т.к. график проходит через А(3; 21), следовательно
у(3) = 21 <=> k•3 = 21 <=> k = 21:3
k = 7
Итак, получили, что b = 0; k = 7
А значит уравнение примет вид:
у = 7х
ответ: у = 7х
Абсолютной величиной (или абсолютным значением) отрицательного числаназывается положительное число, получаемое от перемены его знака (-) на обратный (+). Абсолютная величина -5 есть +5, т. е. 5. Абсолютной величиной положительного числа (а также числа 0) называется само это число.
Знак абсолютной величины - две прямые черты, в которые заключается число, абсолютная величина которого берется. Например,
|-5| = 5,
Сложение чисел с одинаковым знаком.а) При сложении двух чисел с одинаковым знаком складываются их абсолютные величины и перед суммой ставится общий их знак.|+5| = 5,
| 0 | = 0.
Примеры.
(+8) + (+11) = 19;
(-7) + (-3) = -10.
б) При сложении двух чисел с разными знаками из абсолютной величины одного из них вычитается абсолютная величина другого (меньшая из большей) а ставится знак того числа, у которого абсолютная величина больше.
Примеры.
Вычитание чисел с разными знаками.Вычитание одного числа из другого можно заменить сложением; при этом уменьшаемое берется со своим знаком, а вычитаемое с обратным.(-3) + (+12) = 9;
(-3) + (+1) = -2.
Примеры.
(+7) - (+4) = (+7) + (-4) = 3;
(+7) - (-4) = (+7) + (+4) = 11;
(-7) - (-4) = (-7) + (+4) = -3;
(-4) - (-4) = (-4) + (+4) = 0;
Замечание. При выполнении сложения и вычитания, особенно когда имеем дело с несколькими числами, лучше всего поступать так:
1) освободить все числа от скобок, при этом перед числом поставить знак «+ », если прежний знак перед скобкой был одинаков со знаком в скобке, и « -», если он был противоположен знаку в скобке;
2) сложить абсолютные величины всех чисел, имеющих теперь слева знак +;
3) сложить абсолютные величины всех чисел, имеющих теперь слева знак -;
4) из большей суммы вычесть меньшую и поставить знак, соответствующий большей сумме.
Пример.
(-30) - (-17) + (-6) - (+12) + (+2);
(-30) - (-17) + (-6) - (+12) + (+2) = -30 + 17 - 6 - 12 + 2;
17 + 2 = 19;
30 + 6 + 12 = 48;
48 - 19 = 29.
Результат есть отрицательное число -29, так как большая сумма (48) получилась от сложения абсолютных величин тех чисел, перед которыми стоили минусы в выражении -30 + 17 – 6 -12 + 2. На это последнее выражение можно смотреть и как на сумму чисел -30, +17, -6, -12, +2, и как на результат последовательного прибавления к числу -30 числа 17, затем вычитания числа 6, затем вычитания 12и, наконец, прибавления 2. Вообще на выражение а - b + с - d и т. д. можно смотреть и как на сумму чисел (+а), (-b), (+с), (-d), и как на результат таких последовательных действий: вычитания из (+а) числа (+b) , прибавления ( +c), вычитании ( +d) и т. д.
Умножение чисел с разными знакамиПри умножении двух чисел умножаются их абсолютные величины и перед произведением ставится знак плюс, если знаки сомножителей одинаковы, и минус, если они разные.Схема (правило знаков при умножении):
+*+=++*-=--*+=--*-=+Примеры.
( + 2,4) * (-5) = -12;
(-2,4) * (-5) = 12;
(-8,2) * (+2) = -16,4.
При перемножении нескольких сомножителей знак произведения положителен, если число отрицательных сомножителей четно, и отрицателен, если число отрицательных сомножителей нечетно.
Примеры.
Деление чисел с разными знакамиПри делении одного числа на другое делят абсолютную величину первого на абсолютную величину второго и перед частным ставится знак плюс, если знаки делимого и делителя одинаковы, и минус, если они разные (схема та же, что для умножения).(+1/3) * (+2) * (-6) * (-7) * (-1/2) = 7 (три отрицательных сомножителя);
(-1/3) * (+2) * (-3) * (+7) * (+1/2) = 7 (два отрицательных сомножителя).
Примеры.
(-6) : (+3) = -2;
(+8) : (-2) = -4;
(-12) : (-12) = + 1