В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
hamidovapti
hamidovapti
13.12.2020 13:16 •  Алгебра

Разложить на множители разность квадратов 4−10 .

Показать ответ
Ответ:
09876нг8678
09876нг8678
12.01.2022 20:31

На шахматном турнире каждый из участников должен был сыграть ровно одну партию с каждым из прочих, но два участника выбыли из турнира, сыграв только по 3 партии. Поэтому число партий, сыгранных в турнире, оказалось равным 110. Сколько всего было участников турнира?

Объяснение:

Пусть первоначально участников было х.  

Два участника, которые выбыли , сыграли по 3 партии т.е. :  

1 случай ) 3+3=6 , если не играли межлу собой ;  

2 случай) 3+2=5 , если одна партия была между выбывшими.  

Значит партии, оставшиеся на остальных участников :  

1 случай ) 110-6=104 (шт) ;  

2 случай ) 110-5=105 (шт).  

Оставшиеся участники (х-2) сыграли по одной партии. Таких пар это сочетание из (х-2) по 2 :  

С(х-2;2)=104 ,                                         С(х-2;2)=104 ,  

(х-2)!/(2! * (х -4)!) = 104 ;                         (х-2)!/(2! * (х -4)!) =105  

(х-3) *(х -2)/2 =104 ;                                (х-3) *(х -2)/2 =105  

х²-5х+6=104*2 ;                                      х²-5х+6=105*2  

х²-5х-202=0 ;                                          х²-5х-204=0  

D=833>0 ,                                               D=841>0, х₁=17,  

Натуральных корней                             х₂=-15-не подходит по смыслу задачи.  

нет .  

Всего участников 17.  

0,0(0 оценок)
Ответ:
andreyfirst2001
andreyfirst2001
12.01.2022 20:31

На шахматном турнире каждый из участников должен был сыграть ровно одну партию с каждым из прочих, но два участника выбыли из турнира, сыграв только по 3 партии. Поэтому число партий, сыгранных в турнире, оказалось равным 110. Сколько всего было участников турнира?

Объяснение:

Пусть первоначально участников было х.  

Два участника, которые выбыли , сыграли по 3 партии т.е. :  

1 случай ) 3+3=6 , если не играли межлу собой ;  

2 случай) 3+2=5 , если одна партия была между выбывшими.  

Значит партии, оставшиеся на остальных участников :  

1 случай ) 110-6=104 (шт) ;  

2 случай ) 110-5=105 (шт).  

Оставшиеся участники (х-2) сыграли по одной партии. Таких пар это сочетание из (х-2) по 2 :  

С(х-2;2)=104 ,                                         С(х-2;2)=104 ,  

(х-2)!/(2! * (х -4)!) = 104 ;                         (х-2)!/(2! * (х -4)!) =105  

(х-3) *(х -2)/2 =104 ;                                (х-3) *(х -2)/2 =105  

х²-5х+6=104*2 ;                                      х²-5х+6=105*2  

х²-5х-202=0 ;                                          х²-5х-204=0  

D=833>0 ,                                               D=841>0, х₁=17,  

Натуральных корней                             х₂=-15-не подходит по смыслу задачи.  

нет .  

Всего участников 17.  

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота