(2+a)x^2+(1-a)x+a+5=0 Рассмотрим несколько ситуаций: 1)если старший коэффициент при x^2=0 ( при а=-2): 0*x^2+3x-2+5=0 3x+3=0 3x=-3 x=-1 Значит, a=-2 нам подходит 2) если средний коэффициент равен нулю ( при а=1): 3x^2+0*x+1+5=0 3x^2+6=0 3x^2=-6 - решений нет, значит а=1 нам не подходит. 3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля: D= (1-a)^2-4(2+a)(a+5)>=0 1-2a+a^2-4(2a+10+a^2+5a)>=0 1-2a+a^2-4(a^2+7a+10)>=0 1-2a+a^2-4a^2-28a-40>=0 -3a^2-30a-39>=0 3a^2+30a+39<=0 | :3 a^2+10a+13<=0 a^2+10a+13=0 D=10^2-4*1*13=48 a1=(-10-4V3)/2=-5-2V3 a2=-5+2V3
Рассмотрим несколько ситуаций:
1)если старший коэффициент при x^2=0 ( при а=-2):
0*x^2+3x-2+5=0
3x+3=0
3x=-3
x=-1
Значит, a=-2 нам подходит
2) если средний коэффициент равен нулю ( при а=1):
3x^2+0*x+1+5=0
3x^2+6=0
3x^2=-6 - решений нет, значит а=1 нам не подходит.
3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля:
D= (1-a)^2-4(2+a)(a+5)>=0
1-2a+a^2-4(2a+10+a^2+5a)>=0
1-2a+a^2-4(a^2+7a+10)>=0
1-2a+a^2-4a^2-28a-40>=0
-3a^2-30a-39>=0
3a^2+30a+39<=0 | :3
a^2+10a+13<=0
a^2+10a+13=0
D=10^2-4*1*13=48
a1=(-10-4V3)/2=-5-2V3
a2=-5+2V3
+[-5-2V3]-[-5+2V3]+
"-2" - входит в этот промежуток
ответ: x e [-5-2V3] U [-5+2V3]
Объяснение:
1)у=х²-9
х²-9=0
х²=9
х₁,₂=±√9
х₁,₂=±3
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3
у 7 0 -5 -8 -9 -8 -5 0
Смотрим на график и полученные значения х₁ -3 и х₂=3.
Вывод: у>=0 при х∈(-∞, -3]∪[3, ∞)
(у больше нуля при х от - бесконечности до -3 и от 3
до + бесконечности)
(у=0 при х= -3; при х=3)
2)у=2x²-6
2x²-6=0
2x²=6
x²=3
x=±√3 (≈1,7)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 12 2 -4 -6 -4 2 12
Смотрим на график и полученные значения х₁= -√3 и х₂=√3.
Вывод: у>=0 при х∈(-∞, -√3]∪[√3, ∞)
(у больше нуля от - бесконечности до -1,7 и от 1,7 до
+ бесконечности)
(у=0 при х= -√3; х=√3)
3)у=5-х²
у= -х²+5
-х²+5=0
х²-5 =0
х²=5
х=±√5 (≈2,2)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у -11 -4 1 4 5 4 1 -4 -11
Смотрим на график и полученные значения х₁= -√5 и х₂=√5.
Ветви параболы направлены вниз.
Вывод: у>=0 при х∈[-√5, √5]
(у больше нуля от -2,2 до 2,2)
(у=0 при х= -√5; х=√5)
4)y=6-2x²
y= -2x²+6
2x²=6
x²=3
x=±√3 (≈1,7)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у -12 -2 4 6 4 -2 -12
Смотрим на график и полученные значения х₁= -√3 и х₂=√3.
Ветви параболы направлены вниз.
Вывод: у>=0 при х∈[-√3, √3]
(у больше нуля от -1,7 до 1,7)
(у=0 при х= -√3; х=√3)