Решение задач на применение правил деления десятичной дроби на натуральное число и правил деления десятичных дробей. Урок 2 В канун 10-летнего юбилея автозавода «Сарыарка» было выпущено 100000 единиц различных автомобилей. Машин марки «Сhevrolet» в 2,5 раза меньше, чем автомобилей марки «Jac», которые составляет 0,55 от общего количества. Найди, сколько автомобилей марки «Сhevrolet» выпустил завод.
находится из выражения: х₁,₂ = (-в+-√(в²-4ас)) / 2а.
В задании дано: а=3 в = 5 с = 2m x₁ = -1.
Подставляем эти данные в уравнение:
-1 = (-5+-√(5²-4*3*2m)) / 2*3
-6 = -5+-√(25-25m)
-1 = +-√(25-25m) Возведем обе части в квадрат:
1 =25 - 24m 24m = 24 m = 1
Отсюда х = (-5+-√(5²-4*3*2*1)) / 2*3 = (-5 +- 1) / 6
х₁ =(-5+1) / 6 = -4 /6 = -2 / 3 (это второй корень)
х₂ = (-5-1) / 6 = -6 / 6 = -1 (этот корень дан в задании)
1) π--это 180°. Можем 130° разложить как 13*180°/18, поэтому 130°=13π/18 рад. Также этот угол меньше 180°, но больше 90°, поэтому он во второй четверти
2) 19π/4. Теперь вместо π подставляем 180° и сокращаем, что возможно
19*180°/4=19*45=855°. Чтобы узнать четверть, нужно преобразовать этот угол в промежуток от -360° до 360°. Для этого нужно несколько раз отнять по целому обороту (то есть, по 360°)
855°=(360°*2+135°)=135°. Как и в случае, этот угол меньше 180°, но больше 90°, поэтому он во второй четверти