Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
azamaaaaa
04.02.2021 20:34 •
Алгебра
решить с полным раскрытым решением
ОЧЕНЬ
Показать ответ
Ответ:
olgadulebenez
04.04.2023 03:03
Условие существования экстремума: f'(x) = 0.
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
0,0
(0 оценок)
Ответ:
inglis1982
04.04.2023 03:03
Условие существования экстремума: f'(x) = 0.
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
0,0
(0 оценок)
Популярные вопросы: Алгебра
дашадашадашадаша1
23.01.2022 09:47
Катер по течению за 8 ч проплыл такое же расстояние ю,которое проплывает за 9 я против течения.скорость течения реки равна 3 км/ч.вычисли скорость катера в стоячей воде. ! ) в...
zziimmbboo
19.01.2020 05:17
Составить и решить три квадратных уравнения a+b+c=0...
Abdua245
05.03.2020 23:46
Найти наименьшее значение выражения : х²+х-3...
olyazyuzko2017
16.04.2021 19:54
вершина какой из парабол принадлежит оси абсцисс: а) у = х2 - 4; в) у = (х - 4); б) у = х - 4x; г) у = (х - 4) + 3? ...
mspasenkova
18.08.2022 04:16
Выберите один термин по теме функции и их графики . загадайте его так чтобы тому кто будет выполнять твои обязательно нужно будет что-то вычислить или начертить и вспомнить теорию...
andriu12252
19.10.2021 23:29
найдите координаты вершины параболы: а) у=х^2-4х+8 б) у=-х^2+6х+...
бульбуль4
18.08.2022 04:16
Проходит ли график уравнения 3х-4у=7 через точку а(3; 4) в (3; 1/2) с(1; -1) d(1; 1)...
Араиприпо
01.10.2020 10:51
1. решить неравенства: a) 5(2x - 6) - 9x 4x - 15б) х-2. решить системы неравенств: a) - 4x + 11 2x - 7, 3 6x + 13; 6) 5x - 2(x - 4) 5(x + 1),(x - 6)(x + 6) (x - 5) + 9.3. найти...
Bonga1337
20.09.2020 04:09
Решить тождество cosa=sina*ctga...
УбийцаАкамеAkameKill
01.11.2021 12:09
5x^(2) + 6y^(2) = 6y -9 решить теңдеу плез...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -