В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
гений248
гений248
27.05.2021 12:20 •  Алгебра

Решить тригонометрические уравнение. sin^12x+cos^5x=1 (синус в двенадцатой степени икс плюс косинус в пятой степени икс равно единице)

Показать ответ
Ответ:
kjgftgv
kjgftgv
25.05.2020 19:11

так как для любого действительного х: |sin x| \leq 1; |cos x| \leq 1

то

sin^{12} x \leq sin^2 x; cos^5 x \leq cos^2 x

поэтому sin^{12} x+cos^5 x \leq sin^2 x+cos^2 x=1

причем равенство достигается только тогда когда

sin^{12} x=sin^2 x а cos^5 x=cos^2 x

(sin^{10} x-1)sin^2 x=0 а (cos^3 x-1)cos^2 x=0

откуда из первого sin x=1 V sin x=-1 V sin x=0

со второго cos x=1 или cos x=0

учитывая, что когда sin x=1 V sin x=-1 то cos x=0 (по основному тригонометрическому тождеству) а когда cos x=1 то sin x=0, по модулю одновременно они не могут быть равными 1, то

решениями будут

ответ: \frac{\pi}{2}+2*\pi*n n є Z \pi+2*pi*k; k є Z

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота