Чокан Валиханов был чингизидом — правнуком Абылай-хана. Дед Чокана Вали-хан — один из 30 сыновей Абылай-хана. Чокан Валиханов родился в орде-зимовке Кунтимес Аманкарагайского внешнего округа (ныне аул Кунтимес в Сарыкольском районе Костанайской области). Кунтимес была постоянной зимовкой 1834—1853 гг. его отца Чингиса Валиханова[10], старшего султана Аманкарагайского (с 1845 г. Кушмурунского) округа Омской области. При рождении мальчику было дано мусульманское имя Мухаммед-Канафия. Позже придуманное его прозвище Чокан закрепилось как официальное имя. В детстве (1842—1847 гг.) мальчик учился в казахской школе, открытой в орде Кунтимес, где он получил начальные знания казахского, кыпшак-чагатайского, арабского и персидского языков.
Отмечаем на числовой оси оба интервала и ищем пересечение решений, то есть, такое решение, которое подходит двум данным неравенствам.
Пересечение х∈(-∞, -1), это и есть решение системы неравенств.
2) Реши систему неравенств:
x²−81<0
x+8>0
Приравняем первое неравенство к нулю и решим квадратное уравнение:
x²−81=0
x²=81
х₁,₂=±√81
х₁= -9
х₂=9
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -9 и х=9. По графику ясно видно, что у<0 при х от -9 до 9, то есть, решения неравенства в интервале
х∈ (-9, 9), это решение первого неравенства.
Неравенство строгое, скобки круглые.
Теперь решим второе неравенство:
x+8>0
x> -8
х∈ (-8, +∞), это решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Пересечение х∈ (-8, 9), это и есть решение системы неравенств.
3) Реши систему неравенств:
-x>x−2(5x+1)
8−x≥(1+3x)²−9x² в правой части разность квадратов, раскрыть по формуле:
-х>x-10x-2
8-x>=(1+3x-3x)(1+3x+3x)
-x> -9x-2
8-x>=1*(1+6x)
-x+9x> -2
8-x>=1+6x
8x> -2
-x-6x>=1-8
x> -2/8
-7x>= -7
x> -0,25 х∈(-0,25, +∞), это решение первого неравенства.
Неравенство строгое, скобки круглые.
x<=1 х∈(-∞, 1], это решение второго неравенства.
Неравенство нестрогое, х=1 входит в число решений, скобка квадратная. У знаков бесконечности скобка всегда круглая.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Пересечение х∈(-0,25, 1], это и есть решение системы неравенств.
Чокан Валиханов был чингизидом — правнуком Абылай-хана. Дед Чокана Вали-хан — один из 30 сыновей Абылай-хана. Чокан Валиханов родился в орде-зимовке Кунтимес Аманкарагайского внешнего округа (ныне аул Кунтимес в Сарыкольском районе Костанайской области). Кунтимес была постоянной зимовкой 1834—1853 гг. его отца Чингиса Валиханова[10], старшего султана Аманкарагайского (с 1845 г. Кушмурунского) округа Омской области. При рождении мальчику было дано мусульманское имя Мухаммед-Канафия. Позже придуманное его прозвище Чокан закрепилось как официальное имя. В детстве (1842—1847 гг.) мальчик учился в казахской школе, открытой в орде Кунтимес, где он получил начальные знания казахского, кыпшак-чагатайского, арабского и персидского языков.
1)х∈(-∞, -1), решение системы неравенств.
2)х∈ (-8, 9), решение системы неравенств.
3)х∈(-0,25, 1], решение системы неравенств.
Объяснение:
1) Решить систему неравенств:
−x+4>0
5x<−5
-х> -4
x< -1
x<4 знак меняется х∈(-∞, 4) интервал решений
x< -1 х∈(-∞, -1) интервал решений
Неравенства строгие, скобки круглые.
Отмечаем на числовой оси оба интервала и ищем пересечение решений, то есть, такое решение, которое подходит двум данным неравенствам.
Пересечение х∈(-∞, -1), это и есть решение системы неравенств.
2) Реши систему неравенств:
x²−81<0
x+8>0
Приравняем первое неравенство к нулю и решим квадратное уравнение:
x²−81=0
x²=81
х₁,₂=±√81
х₁= -9
х₂=9
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -9 и х=9. По графику ясно видно, что у<0 при х от -9 до 9, то есть, решения неравенства в интервале
х∈ (-9, 9), это решение первого неравенства.
Неравенство строгое, скобки круглые.
Теперь решим второе неравенство:
x+8>0
x> -8
х∈ (-8, +∞), это решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Пересечение х∈ (-8, 9), это и есть решение системы неравенств.
3) Реши систему неравенств:
-x>x−2(5x+1)
8−x≥(1+3x)²−9x² в правой части разность квадратов, раскрыть по формуле:
-х>x-10x-2
8-x>=(1+3x-3x)(1+3x+3x)
-x> -9x-2
8-x>=1*(1+6x)
-x+9x> -2
8-x>=1+6x
8x> -2
-x-6x>=1-8
x> -2/8
-7x>= -7
x> -0,25 х∈(-0,25, +∞), это решение первого неравенства.
Неравенство строгое, скобки круглые.
x<=1 х∈(-∞, 1], это решение второго неравенства.
Неравенство нестрогое, х=1 входит в число решений, скобка квадратная. У знаков бесконечности скобка всегда круглая.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Пересечение х∈(-0,25, 1], это и есть решение системы неравенств.