ДАНО: АВСDEFA1B1C1D1E1F1 - правильная шестиугольная призма ; АВ = АА1 = 1
НАЙТИ: p ( A ; CB1 )
1) точка А и отрезок СВ1 лежат в плоскости треугольника АВ1С.
Все боковые грани правильной шестиугольной призмы равны.
Значит, АВ1 = В1С => ∆ АВ1С - равнобедренный
Найдём все стороны ∆ АВ1С
2) Рассмотрим ∆ АВ1В ( угол АВВ = 90° ):
По теореме Пифагора:
АВ1² = АВ² + ВВ1²
АВ1² = 1² + 1² = 2
АВ1 = √2
АВ1 = В1С = √2
3) В основании правильной шестиугольной призмы лежит правильный шестиугольник. Все углы правильного шестиугольника равны 120°.
Рассмотрим ∆ АВС ( АВ = ВС ):
По теореме косинусов:
АС² = АВ² + ВС² - 2 × АВ × ВС × cos ABC
AC² = 1² + 1² - 2 × 1 × 1 × cos 120°
AC² = 2 - 2 × ( - 1/2 ) = 2 + 1 = 3
AC = √3
4) B1B перпендикулярен ВН
ВН перпендикулярен АС
Значит, по теореме о трёх перпендикулярах В1Н перпендикулярен АС
Высота в равнобедренном ∆ АВ1С является и медианой и биссектрисой =>
АН = НС = 1/2 × АС = 1/2 × √3 = √3/2
5) Рассмотрим ∆ В1СН ( угол В1НС = 90° ):
В1С² = В1Н² + НС²
В1Н² = ( √2 )² - ( √3/2 )² = 2 - 3/4 = 5/4
В1Н = √5/2
Опустим из точки А перпендикуляр АМ на отрезок В1С. Соответственно, АМ = р ( А ; В1С )
6) Найдём площадь ∆ В1АС:
S b1ac = 1/2 × AC × B1H
С другой стороны, S b1ac = 1/2 × B1C × AM
Приравняем площади и получим:
1/2 × АС × В1Н = 1/2 × В1С × АМ
АС × В1Н = В1С × АМ
АМ =
Значит, p ( А ; В1С ) = √30/4
ОТВЕТ: √30 / 4
Объяснение:
ДАНО: АВСDEFA1B1C1D1E1F1 - правильная шестиугольная призма ; АВ = АА1 = 1
НАЙТИ: p ( A ; CB1 )
1) точка А и отрезок СВ1 лежат в плоскости треугольника АВ1С.
Все боковые грани правильной шестиугольной призмы равны.
Значит, АВ1 = В1С => ∆ АВ1С - равнобедренный
Найдём все стороны ∆ АВ1С
2) Рассмотрим ∆ АВ1В ( угол АВВ = 90° ):
По теореме Пифагора:
АВ1² = АВ² + ВВ1²
АВ1² = 1² + 1² = 2
АВ1 = √2
АВ1 = В1С = √2
3) В основании правильной шестиугольной призмы лежит правильный шестиугольник. Все углы правильного шестиугольника равны 120°.
Рассмотрим ∆ АВС ( АВ = ВС ):
По теореме косинусов:
АС² = АВ² + ВС² - 2 × АВ × ВС × cos ABC
AC² = 1² + 1² - 2 × 1 × 1 × cos 120°
AC² = 2 - 2 × ( - 1/2 ) = 2 + 1 = 3
AC = √3
4) B1B перпендикулярен ВН
ВН перпендикулярен АС
Значит, по теореме о трёх перпендикулярах В1Н перпендикулярен АС
Высота в равнобедренном ∆ АВ1С является и медианой и биссектрисой =>
АН = НС = 1/2 × АС = 1/2 × √3 = √3/2
5) Рассмотрим ∆ В1СН ( угол В1НС = 90° ):
По теореме Пифагора:
В1С² = В1Н² + НС²
В1Н² = ( √2 )² - ( √3/2 )² = 2 - 3/4 = 5/4
В1Н = √5/2
Опустим из точки А перпендикуляр АМ на отрезок В1С. Соответственно, АМ = р ( А ; В1С )
6) Найдём площадь ∆ В1АС:
S b1ac = 1/2 × AC × B1H
С другой стороны, S b1ac = 1/2 × B1C × AM
Приравняем площади и получим:
1/2 × АС × В1Н = 1/2 × В1С × АМ
АС × В1Н = В1С × АМ
АМ =
Значит, p ( А ; В1С ) = √30/4
ОТВЕТ: √30 / 4
Объяснение:
a) 25 - 36p²c² = 5² - (6pc)² = (5 - 6pc)(5+6pc)
б) 100a⁴b²c² - 121 = (10a²bc)² - 11² = (10a²bc - 11)(10a²bc +11)
2)
а) (3x+1)² - (4x+3)² = (3x+1 -(4x+3))(3x+1+4x+3) =
= (3x+ 1 - 4x - 3)(7x + 4) = (-x - 2)(7x+4) =
= -(x+2)(7x+4)
б) (а+b+c)² - (a -b -c)² = (a+b+c -(a-b-c) ) * (a+b+c +a-b-c) =
= (a+b+c -a+b+c) * 2a = (2b + 2c) * 2a = 2(b+c) * 2a =
= 4a(b+c)
3)
a) x²ⁿ - 9 = (xⁿ)² - 3² = (xⁿ - 3)(xⁿ + 3)
б) k² - a⁴ⁿ = k² - (a²ⁿ)² = (k - a²ⁿ)(k + a²ⁿ)
в) х²ⁿ - у²ⁿ = (хⁿ -уⁿ)(хⁿ +уⁿ)
г)81а⁴ⁿ - 1 = (9а²ⁿ)² - 1² = (9а²ⁿ - 1)(9а²ⁿ + 1) =
= ( (3аⁿ)² - 1²)(9а²ⁿ + 1) = (3аⁿ -1)(3аⁿ +1)(9а²ⁿ + 1)
4)
а) 2а(5а + 10) + (2а - 8)(3а+2) =
= 10а² + 20а + 6а² + 4а - 24а - 16 =
= 16а² - 16 = 16(а² - 1) =
= 16(а-1)(а+1)
б)(3х + 5)(4х - 5) - 2х(2,5 + 1,5х) =
= 12х² - 15х + 20х - 25 - 5х - 3х² =
= 9х² - 25 = (3x)² - 5² =
= (3x - 5)(3x+5)