1. Пусть собственная скорость моторной лодки равна х км\час, тогда ее скорость по течению равна х+2 км\час, против течения х-2 км\час. По условию задачи составляем уравнение:
2.5(х-2)=2(х+2);
2.5х-5=2х+4;
2.5х-2х=4+5;
0.5х=9;
х=9:0.5;
х=18
значит собственная скорость моторной лодки равна 18 км\час.
ответ: 18 км\час
2. 4 * ( X + 2 ) - 2 * ( X - 2 ) = 28
4X + 8 - 2X + 4 = 28
2X = 28 - 12
2X = 16
X = 8 ( км\час) - собственная скорость лодки
3. Пусть х кг- купили конфет, х+2 кг - купили печенья, тогда х*60 - заплатили за конфеты, (х+2)*44- заплатили за печенье
Задача решается через систему двух уравнений с двумя переменными. Пусть скорость третьего велосипедиста равна v км/ч, а t ч - время, за которое он догнал второго велосипедиста. До встречи третий и второй велосипедисты проехали одно и то же расстояние. По условию задачи, второй ехал на 1 час больше, чем третий. Тогда t+1 ч - время второго Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t v*t второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов, а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего. Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t+9 v*(t+9) второй 24 t+11 24*(t+11) Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений: { vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение) { v(t+9)=24(t+11)
Итак, t=3 часа Находим скорость третьего велосипедиста: (км/ч)
1. Пусть собственная скорость моторной лодки равна х км\час, тогда ее скорость по течению равна х+2 км\час, против течения х-2 км\час. По условию задачи составляем уравнение:
2.5(х-2)=2(х+2);
2.5х-5=2х+4;
2.5х-2х=4+5;
0.5х=9;
х=9:0.5;
х=18
значит собственная скорость моторной лодки равна 18 км\час.
ответ: 18 км\час
2. 4 * ( X + 2 ) - 2 * ( X - 2 ) = 28
4X + 8 - 2X + 4 = 28
2X = 28 - 12
2X = 16
X = 8 ( км\час) - собственная скорость лодки
3. Пусть х кг- купили конфет, х+2 кг - купили печенья, тогда х*60 - заплатили за конфеты, (х+2)*44- заплатили за печенье
По условию всего заплатили 348 руб
Составляем уравнение:
х*60+ (х+2)*44=348
60х+44х+88=348
104х=348-88
104х=260
х=260:104
х=2,5 кг - купили конфет
2,5 +2=4,5 кг - купили печенья
ответ 2,5 кг; 4,5 кг
Пусть скорость третьего велосипедиста равна v км/ч,
а t ч - время, за которое он догнал второго велосипедиста.
До встречи третий и второй велосипедисты проехали одно и то же расстояние.
По условию задачи, второй ехал на 1 час больше, чем третий.
Тогда t+1 ч - время второго
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t v*t
второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов,
а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего.
Получаем:
Скорость (км/ч) Время (ч) Расстояние (км)
третий v t+9 v*(t+9)
второй 24 t+11 24*(t+11)
Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений:
{ vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение)
{ v(t+9)=24(t+11)
Итак, t=3 часа
Находим скорость третьего велосипедиста:
(км/ч)
ответ: 28 км/ч