Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
Путь (S) = 10 м
Ускорение (а) = 5м/с2
Объяснение:
Покажем на рисунке необходимые величины. Ось X направим по направлению движения. Так как скорость спринтера растёт, то ускорение направлено также по движению (по скорости). Это можно понять, если проанализировать формулу (6) – вектор v будет увеличиваться, если он направлен по вектору a ! Впрочем, если ты не знаешь, куда направить ускорение – ничего страшного – направляй куда-нибудь (в этой задаче, естественно, либо по движению, либо против). Знак ответа даст тебе правильное направление: если получится (+), то ускорение было направлено правильно, ну а если (–), то в другую сторону.
Запишем формулы (6) и (7) в проекции на ось X для данной задачи:
v A=at ; S= at 2
По условию начальная скорость v0=0 , а так как все вектора 2 направлены по оси X, то везде знаки (+). Из первой формулы можно найти ускорение a=vtA =5 м/с2 , подставляя которое во вторую формулу получим перемещение (и путь, так как движение происходит вдоль прямой в одну сторону): S=10м .
х=84; у=58.
Объяснение:
Известно, что 30% числа х на 2 больше, чем 40% числа у, а 50% числа у на 8 больше, чем ¼ числа х. Найдите числа х и у.
Согласно условию задачи составляем систему уравнений:
0,3х-0,4у=2
0,5у-0,25х=8
Разделить второе уравнение на 0,25 для упрощения:
0,3х-0,4у=2
2у-х=32
Выразим х через у во втором уравнении, подставим выражение в первое уравнение и вычислим у:
-х=32-2у
х=2у-32
0,3(2у-32)-0,4у=2
0,6у-9,6-0,4у=2
0,2у=2+9,6
0,2у=11,6
у=11,6/0,2
у=58
х=2у-32
х=2*58-32
х=84
Проверка:
0,3*84-0,4*58=25,2-23,2=2
0,5*58-0,25*84=29-21=8, верно.